
A Hitchhiker’s Guide to Bayesian Hierarchical Drift-1

Diffusion Modeling with dockerHDDM 2

 3

Wanke Pan1, Haiyang Geng2, Lei Zhang3, 4, 5, Alexander Fengler6, 4

Michael J. Frank6, Ru-Yuan Zhang7, 8, Hu Chuan-Peng1 5
 6
1 School of Psychology, Nanjing Normal University, Nanjing 210024, China 7
2 Tianqiao and Chrissy Chen Institute for Translational Research, Shanghai, China 8
3 Social, Cognitive and Affective Neuroscience Unit, Department of Cognition, Emotion, and 9

Methods in Psychology, Faculty of Psychology, University of Vienna, Vienna, 1010, Austria 10
4 Centre for Human Brain Health, School of Psychology, University of Birmingham, 11

Birmingham B15 2TT, UK 12
5 Institute for Mental Health, School of Psychology, University of Birmingham, Birmingham 13

B15 2TT, UK 14
6 Department of Cognitive, Linguistic and Psychological Sciences, Brown University, 15

Providence, United States 16
7 School of Psychology, Shanghai Jiao Tong University, Shanghai 200030, China. 17
8 Shanghai Mental Health Center, School of Medicine, Shanghai Jiao Tong University, Shanghai 18

200030, China. 19

 20

Author Note 21

Wanke Pan https://orcid.org/0000-0002-0896-6833 22

Hu Chuan-Peng https://orcid.org/0000-0002-7503-513 23

Haiyang Geng https://orcid.org/0000-0001-6115-807X 24

Lei Zhang https://orcid.org/0000-0002-9586-595X 25

Alexander Fengler https://orcid.org/0000-0002-0104-3905 26

Michael J. Frank https://orcid.org/0000-0001-8451-0523 27

Ru-Yuan Zhang https://orcid.org/0000-0002-0654-715X 28

 29

 30

Correspondence: 31

Hu Chuan-Peng, 32

School of Psychology 33

Nanjing Normal University (Suiyuan campus) 34

#122 Ninghai Road, Gulou District, 210024 Nanjing, Jiangsu Province, China 35

Email: hu.chuan-peng@nnu.edu.cn 36

 37

Ru-Yuan Zhang 38

School of Psychology and Shanghai Mental Health Center 39

Shanghai Jiao Tong University 40

1954 HuaShan RD, Xuhui District, 200030 Shanghai, China 41

Email: ruyuanzhang@sjtu.edu.cn42

https://orcid.org/0000-0002-0896-6833
https://orcid.org/0000-0002-7503-513
https://orcid.org/0000-0001-6115-807X
https://orcid.org/0000-0002-9586-595X
https://orcid.org/0000-0002-0104-3905
https://orcid.org/0000-0001-8451-0523
https://orcid.org/0000-0002-0654-715X
https://orcid.org/0000-0002-0654-715X
mailto:hu.chuan-peng@nnu.edu.cn
http://ruyuanzhang@stju.edu.cn

Running title: Hitchhiker’s Guide with dockerHDDM

1

Abstract 43

Drift diffusion models (DDMs) are pivotal in understand decision-making processes across 44

psychology, behavioral economics, neuroscience, and psychiatry. Hierarchical drift diffusion 45

models (HDDM), a Python library for hierarchical Bayesian estimation of DDMs, has been widely 46

used among researchers, including those with limited coding proficiency, in fitting DDMs and 47

other sequential sampling models to their data. However, issues of compatibility in installation and 48

lack of support for more recently Bayesian modeling functionalities poses serious challenges for 49

new users, limiting broader application of HDDM and reproducibility of research that used HDDM. 50

To address these issues, we dockerize HDDM and add new functions into dockerHDDM, which 51

brings three improvements: (1) easy-to-install once docker is installed, ensuring reproducibility 52

and saving time for researchers; (2) compatible with machine with apple chips; (3) seamlessly 53

integration with ArviZ, a state-of-the-art Bayesian modeling library. This tutorial serves as a 54

practical, hands-on guide for researchers to leverage dockerHDDM’s capabilities in conducting 55

efficient Bayesian hierarchical analysis of DDMs. The notebook presented here and within the 56

docker image will enable researchers with various programming levels to model their data with 57

HDDM. 58

Keywords: HDDM, drift diffusion models, Bayesian hierarchical modeling, Reproducibility, 59

Docker, Python 60

Running title: Hitchhiker’s Guide with dockerHDDM

2

 61

Box 1. Glossary of Terms Used in Bayesian Modeling

Prior, or prior distribution, often referred to as 𝑝(𝜃), is the initial belief that researchers have about
the parameters 𝜃 in a model before observing data. It can be formed either from existing research or from
pilot data.

Likelihood, or likelihood function, often referred to as 𝑝(𝑦|𝜃), is the probability of the observed
data 𝑦 as a function of the specific parameters 𝜃 of a chosen statistical model. For example, the Bernoulli
function is the likelihood function for statistically describing coin tossing.

Posterior, or posterior distribution, often referred to as 𝑝(𝜃|𝑦), refers to the updated knowledge
about the parameters 𝜃 after observing the data 𝑦 , balancing prior knowledge with observed data
according to the Bayes rule, i.e., 𝑝(𝜃|𝑦) ∝ 𝑝(𝑦|𝜃)𝑝(𝜃) .

Markov chain Monte Carlo (MCMC), is a sampling method to infer the posterior distribution by
simulation. The Markov chains (usually multiple MCMC chains are required) are algorithmically
constructed so that their corresponding stationary distribution using MCMC samples approximates the
posterior distribution of interest. The process of reaching this stationary distribution is called MCMC
convergence. These sampled parameter values serve as the approximation to the posterior distribution and
can then be used to obtain empirical estimates of the posterior distribution, and associated summary statistics
of interest, using Monte Carlo integration. In the literature, a chain (or trace) is referred to as a collection of
samples (or draws). Traces serve as a basis for diagnosing convergence and/or other potential problems with
the procedure in a given application. MCMC is particularly useful for models with high complexity.

Effective sample size (ESS), is the number of independent samples with the same estimation power
as the N autocorrelated samples from one MCMC chain. ESS is often used to determine whether the number
of draws in MCMC chains is sufficient to guarantee reliable estimation of uncertainty. An ESS of 100 per
MCMC chain is recommended by (Vehtari, et al., 2021).

Gelman-Rubin statistics (�̂�), the ratio of within-chain variability to between-chain variability.
Values close to 1.0 for all parameters and quantities of interest suggest that the Markov chain Monte Carlo

algorithm has sufficiently converged to stationary distributions. In practice, a maximum �̂� of 1.05 is
acceptable.

Posterior predictive samples, simulated new data conditional on the posterior distribution. The
simulated data can then be used to check whether the model can be considered a good fit to the data-
generating mechanism, by comparing the simulation with the observed data. This process is often called
posterior predictive checks (PPCs).

Leave-one-out cross-validation (LOO-CV), a model evaluation approach that trains the model on
all observations except observation 𝑦𝑖, and then predicts the hold-out observation 𝑦𝑖. This procedure is
repeated for all n observations.

Log predictive density, 𝑙𝑜𝑔 𝑝(�̃�|𝜃), an overall summary of a model’s predictive abilities by
estimating the log likelihood of new data �̃� given the true parameters 𝜃. However, since both the new data
�̃� and the true model parameters θ are typically unavailable in empirical data, the log predictive density is

approximated using the observed data 𝑦 and the posterior estimates of the parameters 𝜃 , hence

𝑙𝑜𝑔 𝑝(�̃�|𝜃) ≈ 𝑙𝑜𝑔 𝑝(𝑦|𝜃) . This estimate, when multiplied by -2, gives the deviance, −2 𝑙𝑜𝑔 𝑝(𝑦|𝜃) .

However, as 𝑙𝑜𝑔 𝑝(𝑦|𝜃) is a biased estimate of 𝑙𝑜𝑔 𝑝(�̃�|𝜃), an adjustment is required to correct the bias.

Log pointwise predictive density, likelihood of each observed data point conditional on the model
parameters. In practice, this quantity is estimated using draws from the posterior in Bayesian analysis, i.e.,

the computed log pointwise predictive density: 𝑙𝑝�̂� = ∑ 𝑙𝑜𝑔 (
1

𝑆
∑ 𝑝(𝑦𝑖 |𝜃𝑠)𝑆

𝑠=1)𝑛
𝑖=1 (lpd in Vehtari et al.,

2017, or lppd in Gelman et al., 2014).
Expected log pointwise predictive density (ELPD), a measure of predictive accuracy for n data

points generated by the true data generating process. ∑ 𝐸𝑓(𝑙𝑜𝑔 𝑝𝑝𝑜𝑠𝑡(�̃�𝑖))𝑛
𝑖 = 1 , where f is the true model, y

is the observed data, �̃� denotes future data or alternative datasets that could have been seen, 𝐸𝑓 denotes

expectation that averages over the distribution of data generating distribution, and 𝑝𝑝𝑜𝑠𝑡 is the posterior

distribution. This term is also called mean log predictive density.

Running title: Hitchhiker’s Guide with dockerHDDM

3

The drift-diffusion model (DDM) is one of the most widely used computational models (Ratcliff 62

et al., 2016) to quantify decision-making processes in neuroscience (Cavanagh et al., 2011; Herz 63

et al., 2016, 2017; Shadlen & Shohamy, 2016), psychology (Hu et al., 2020; Johnson et al., 2017; 64

Kutlikova et al., 2023), behavioral economics (Desai & Krajbich, 2022; Sheng et al., 2020), and 65

psychiatry (Ging-Jehli, Ratcliff, & Arnold, 2021; Pedersen et al., 2021). According to the DDM 66

experimentally observed reaction-time choice pairs arise from a process of stochastic evidence 67

accumulation to a decision boundary (e.g., Voss et al., 2013; Figure 1). This theoretical framework 68

has been shown not only to correlate robustly with established neural substrates (Forstmann et al., 69

2016), but also to serve as a powerful measurement tool for examining individual differences 70

across cognitive tasks, experimental manipulations, and participant populations (Evans & 71

Wagenmakers, 2019). Despite its theoretical contributions, the DDM is difficult to apply to 72

experimental data in practice, because the derivation of inference-relevant quantities (e.g., the 73

likelihood function) requires a mathematical understanding of the complex stochastic process of 74

evidence accumulation. 75

Several software packages have been developed to facilitate the application of DDM, 76

proving particularly beneficial for researchers with limited computational expertise. Among them, 77

HDDM, a Python library for hierarchical drift diffusion modeling, is by far the most cited toolbox 78

in the community (Wiecki, Sofer, & Frank, 2013, with 908 citations in Google Scholar, retrieved 79

on Mar. 20, 2024). Despite the success and popularity of HDDM, it suffers from several practical 80

issues. First, the installation process of HDDM is cumbersome, exacerbated by its reliance on 81

PyMC 2.3.8 for Markov Chain Monte Carlo (MCMC) sampling, a package that is no longer 82

supported and may clash with latest computer modules. Second, and for the same reason, out of 83

Highest density interval (HDI): an estimate of a parameter's credible range in the context of
Bayesian statistics. It encompasses an interval of the posterior distribution where each point within this
interval has a higher density than points outside of it. For instance, a 95% HDI means that there is a 95%
chance that the true parameter value falls within this range, making it a reliable indicator of parameter
uncertainty. HDIs are commonly used for hypothesis testing regarding effect sizes, as well as comparisons
across different conditions or groups.

A region of practical equivalence (ROPE) represents a predefined range of parameter values that
are considered practically equivalent to zero, which could be based on existing literature or theoretical
reasoning (Kruschke, 2018, 2021). To determine whether a parameter estimate is significantly different from
zero, a ROPE might be set as a range around zero. If the 95% HDI of the parameter lies entirely outside this
ROPE, the parameter is considered credibly different from zero. If the HDI is entirely within the ROPE, the
parameter is effectively zero for practical purposes. Partial overlap suggests that the parameter’s result
should be interpreted with caution.

Running title: Hitchhiker’s Guide with dockerHDDM

4

the box HDDM is not compatible with apple chips, which creates a significant barrier for Mac 84

users. Third, although HDDM natively centers around Bayesian methods, it does not conveniently 85

support all aspects of the evolved standards in Bayesian modeling workflows (Gelman et al., 2020; 86

Kruschke, 2021; Zhang et al., 2020). Significant progress has recently been made in supporting 87

the principled Bayesian modeling workflow in easy-to-use toolkits, such as the Python package 88

ArviZ (Kumar et al., 2019). Bridging these new capabilities with HDDM facilitates a one-stop 89

Bayesian modeling pipeline for experimentalists and computational modelers interested in 90

applying the DDM to their experimental data. 91

Figure 1. Illustration of the evidence accumulation process assumed by DDM. DDM has four 92
basic parameters: drift rate (𝑣), decision boundary (𝑎), initial bias (𝑧), and non-decision time (𝑡). 93
The drift rate (𝑣) is the average speed of evidence accumulation toward a decision; the decision 94
boundary (𝑎) is the distance between two decision thresholds, and the evidence needed to make 95
a decision increase as 𝑎 increases; the initial bias (𝑧) reflects the starting point of evidence 96
accumulation. When 𝑧 is closer to one of the boundaries, less evidence is required for that 97
decision (conversely more evidence is required for the opposite decision); non-decision time (𝑡) 98
is the time not used for evidence accumulation, e.g., stimulus encoding or motor execution. A 99
more complete version of DDM assumes that the values of drift rate, initial bias, and non-decision 100
time vary across trials due to fluctuations in various psychological and physiological factors (e.g., 101
attention lapse, arousal), so three additional parameters are included: trial-by-trial variation in 102
drift rate (𝑠𝑣), variation in the initial bias (𝑠𝑧), and variation in non-decision time (𝑠𝑡). 103

To address the above issues, we leveraged the Docker container technology to create 104

dockerHDDM, a stable and complete virtualized Python computing environment that enables out-105

of-the-box implementations of Bayesian hierarchical drift-diffusion models. dockerHDDM has 106

three major advantages (Table 1). First, it benefits from the easy-to-deploy nature of the Docker 107

Running title: Hitchhiker’s Guide with dockerHDDM

5

environment to avoid compatibility issues. Second, it is compatible with both Intel or Apple chips. 108

Third, it augments HDDM with ArviZ, a Python module that enables a wide range of advanced 109

Bayesian modeling analyses. We expect dockerHDDM to provide an easy-to-use environment to 110

help researchers across various backgrounds efficiently use DDM in their research. 111

Table 1. Comparisons between dockerHDDM and the original HDDM package 112

 HDDM dockerHDDM

Support ArviZ * No Yes

Plotting (e.g., HDI,) No Yes

Diagnosis (e.g., ESS) No Yes

Model Comparison (LOO, WAIC) No Yes

Installation Hard Easy

Parallel processing Hard Easy

Compatibility with Apple chips Hard Easy

* Plotting, diagnosis, and model comparison are functions of ArviZ, including HDI, high-density interval; 113
ESS, effective sample size, LOO, leave-one-out cross-validation; WAIC, widely applicable information 114
criterion; PPC, posterior predictive checks. 115

1. How to Follow This Tutorial 116

The primary goal of this paper is to present a practical guide to dockerHDDM for beginners with 117

little modelling experience. The tutorial starts with step-by-step instructions on how to configure 118

the dockerHDDM environment and how to use it in practical data analysis (Figure 2). 119

In the setup section (top panel in Figure 2, corresponding to Section 2.1 in this paper), we 120

provide instructions on how to install Docker. After that, we demonstrate how to obtain the 121

dockerHDDM image and how to use this image to access the Jupyter notebook interface (middle 122

panel in Figure 2, corresponding to Sections 2.2 and 2.3). Finally, within a working Jupyter 123

notebook we show how to analyze an example dataset with dockerHDDM in a principled Bayesian 124

workflow (bottom panel in Figure 2, corresponding to Section 4). 125

Running title: Hitchhiker’s Guide with dockerHDDM

6

Figure 2. Flowchart of how to use dockerHDDM. The top panel describes how to install Docker, 126
corresponding to Section 2.1; the middle panel describes how to pull and run dockerHDDM, 127
corresponding to Sections 2.2 and 2.3; and the bottom panel shows the workflow in 128
dockerHDDM, corresponding to Section 4. In the bottom panel, the green circle represents the 129
model defined based on the specified data; the purple ellipse represents the InferenceData 130
obtained after model fitting; the dotted box shows the pseudo code. After model diagnosis, 131
evaluation and comparison, the optimal model (Model 2 “m2” with “infdata2”) is selected and 132
used for inferential analysis. 133

Running title: Hitchhiker’s Guide with dockerHDDM

7

2. Install and Use dockerHDDM 134

2.1. Install Docker 135

Docker serves us to create an all-in-one, fast, cross-platform computing environment (e.g., Peikert 136

& Brandmaier, 2021; Wiebels & Moreau, 2021). The Docker website provides easy-to-follow 137

installation instructions (https://docs.docker.com/get-docker/) and supports Windows, MacOS, 138

and Linux. Windows users should ensure their system version is 21H2 (build 19044) or higher and 139

have either WSL or Hyper-V configured prior to installation (see 140

https://docs.docker.com/desktop/install/windows-install/). 141

After installing Docker Desktop (or Docker Engine for Linux users), one can verify the 142

installation by running the following command in a terminal1 (Figure 3). If the container starts 143

and runs successfully, it will display a confirmation message and then exit (Figure 3). 144

`docker run hello-world` 145

Figure 3. Command to check Docker installation in Terminal. After running the command 146
`docker run hello-world` (highlighted at first line), the printout tells us that Docker has 147
been successfully installed on the system. The schematic interfaces of the Terminal on different 148
platforms: MacOS (left), Windows (middle), and Ubuntu (right). 149

1 If you are unfamiliar with Terminal and the command line, don’t panic! You can easily launch the Terminal application or the

command line: MacOS users, search “Terminal” in Launchpad or Spotlight; Windows users, you can search for the terminal

application “PowerShell”; Linux users, you can use the hotkey of “Ctrl, Alt and T” to start the Terminal. If you want to learn

more about Termainal, we recommend https://www.freecodecamp.org/news/command-line-for-beginners/. Once the Terminal is

active (see Figure 3), you can type `docker run hello-world` and then press “ENTER”. For Windows and MacOS users,

make sure the Docker desktop is running before typing `docker run hello-world`.

https://docs.docker.com/get-docker/
https://docs.docker.com/desktop/install/windows-install/
https://www.freecodecamp.org/news/command-line-for-beginners/

Running title: Hitchhiker’s Guide with dockerHDDM

8

2.2. Pull dockerHDDM Image 150

After ensuring that Docker has been successfully installed and the Docker engine is running 151

(Figure 3), you can pull the dockerHDDM image by simply running the command in the terminal 152

(see the meaning of each argument in Figure 4A): 153

`docker pull hcp4715/hddm` or `docker pull hcp4715/hddm:latest` 154

This command will pull the latest default version of dockerHDDM, which corresponds to 155

the image with the tag ̀ 1.0.1`. One can also select different tags for different versions of HDDM 156

(see https://hub.docker.com/r/hcp4715/hddm/tags). Note that the tutorial in this paper works with 157

the `latest` or `1.0.1` tags, it is compatible with 0.8.0, with minor grammar changes. 158

Figure 4. Docker commands to download and run dockerHDDM. (A) Download/pull 159
dockerHDDM from the Docker hub. The command by default downloads the latest version of 160
`hcp4715/dockerHDDM` if the image tag is not specified. The CPU architecture (Apple or Intel 161
chips, corresponding to ARM64 and AMD64 architectures, respectively) is automatically 162
recognized when the image is downloaded. (B) Command to start a container. Note, “\” separates 163
different lines of a command in Linux and MacOS Terminal but not in Windows. 164

https://hub.docker.com/r/hcp4715/hddm/tags

Running title: Hitchhiker’s Guide with dockerHDDM

9

2.3. Run dockerHDDM Container 165

After pulling the Docker image to a local machine, you can start a computing environment by 166

running the dockerHDDM image with the command in the terminal (Figure 4B): 167

`docker run -v $(pwd):/home/jovyan/work -p 8888:8888 168

-it --rm hcp4715/hddm jupyter notebook` 169

This command creates a Docker container, which is a specialized environment 170

encapsulated within the Docker platform. The `-v` option is used to mount a local folder into the 171

container’s filesystem, enabling file exchange from the host machine. The example code 172

`$(pwd):/home/jovyan/work` specifies two paths separated by a colon. The path on the left, 173

denoted by `$(pwd)`, represents the current working directory on the host machine, and the path 174

on the right, `/home/jovyan/work`, is the location inside the container where the folder will 175

be mounted (Figure 4B). ̀ $(pwd)` can be replaced with a valid folder path on your local machine, 176

such as “D:\docker” on Windows, which is an absolute path to a folder named ‘docker’ on drive 177

D. The other arguments in the command are explained in Figure 4B. 178

After running the `docker run …` command, a URL will be displayed at the end of the 179

terminal output (middle panel in Figure 2). You can copy and paste this URL into any web browser 180

(such as Firefox or Chrome) to launch a Jupyter interface based on the dockerHDDM container. 181

You can then open or initialize a Jupyter notebook2 to code, run and view the output directly. It is 182

worth noting that the `--rm` flag included in the command means that the dockerHDDM 183

container, along with any data or newly installed Python modules, will be deleted when the 184

container stops. However, any files or data mounted to the container from the `$(pwd)` path will 185

remain unaffected. This ensures the reproducibility of the computing environment. If you wish to 186

modify the computing environment, for example by installing additional Python modules, we 187

recommend that you first read the Docker API before removing `--rm` directly. 188

In the Jupyter interface, you will find two files and two folders (middle panel in Figure 2). 189

The notebook dockerHDDM_workflow.ipynb offers a detailed reproduction of the analyses 190

2 For beginners unfamiliar with Jupyter Notebook, don’t panic! It is just an interface where you can write code and immediately

check results. You may visit the official website at https://jupyter.org/try-jupyter/retro/notebooks/?path=notebooks/Intro.ipynb to

try out a web-based platform online. The Jupyter website also provides extensive documentation for users who want to learn

more about Jupyter Notebook and Python programming (see https://docs.jupyter.org/).

https://jupyter.org/try-jupyter/retro/notebooks/?path=notebooks/Intro.ipynb
https://docs.jupyter.org/

Running title: Hitchhiker’s Guide with dockerHDDM

10

presented in this article, which we will discuss further in Section 3. In contrast, the notebook 191

dockerHDDM_Quick_View.ipynb provides a brief overview of the dockerHDDM image’s new 192

features and an introduction to basic modeling processes. One folder is “work”, which mounts the 193

local path into the docker environment. The other folder, “OfficialTutorials” contains notebooks 194

that reproduce the official tutorials available at 195

https://hddm.readthedocs.io/en/latest/tutorials.html. Beginners can follow 196

HDDM_Basic_Tutorial.ipynb to get a basic understanding of HDDM, as discussed in Wiecki et 197

al. (2013); HDDM_Regression_Stimcoding.ipynb covers more advanced models with regression, 198

where parameters can vary based on experimental conditions and other covariates; 199

Posterior_Predictive_Checks.ipynb provide an introduction to posterior predictive checks for 200

HDDM, showing how to generate predicted data from fitted parameter posteriors and how to 201

analyze those predicted data; LAN_Tutorial.ipynb provides advanced use of LAN functions that 202

address the problematic likelihood of more complicated models based on neural network methods 203

(see Fengler, Govindarajan, Chen, & Frank, 2021). 204

3. New Features of dockerHDDM 205

The dockerHDDM_Quick_View.ipynb illustrates two new features in dockerHDDM (compared to 206

HDDM installed directly without Docker): parallel computing for MCMC chains and creating 207

InferenceData data for Arivz analyses (as shown in the <Code Block 1>). 208

<Code Block 1> 209

```Python 210 
# define a simple model with preloaded data 211 

model = hddm.HDDM(data) 212 

 213 

# origin model fitting code 214 

# model.sample(500, burn = 100) 215 

 216 

# dockerHDDM new model fitting code 217 

model.sample( 218 

 500, burn = 100, 219 

 chains = 4,  # parallel computing for MCMC chains  220 

 return_infdata = True, # return InferenceData for Arivz analysis 221 

 loglike = True, ppc = True, 222 

 save_name = 'example' 223 

) 224 

``` 225 

https://hddm.readthedocs.io/en/latest/tutorials.html

Running title: Hitchhiker’s Guide with dockerHDDM

11

For all hddm models defined by methods such as `hddm.HDDM()` or 226

`hddm.HDDMRegressor()`, we can employ the `.sample()` method to run the MCMC 227

algorithm for model fitting. The original HDDM provided two main parameters to set the MCMC 228

algorithm, the first parameter was the number of samples (`500`) and the second was the number 229

of burn-ins (`burn=100`)3. 230

In dockerHDDM, we included five extra arguments in `.sample()` method to provide 231

parallel computing for MCMC chains and create InferenceData. 232

To preserve compatibility and consistent output with origin HDDM, the arguments are 233

configured with the following defaults: `return_infdata=False`, `loglike=False `, and 234

`ppc=False `, `save_name=None`, and `chains=1`. 235

The `chains` argument determines the number of MCMC chains. Using more than two 236

chains triggers multi-threaded parallel computation, which can significantly reduce time when 237

multi-chains are need for calculating model diagnosis index �̂� (see Section 4.4). 238

The `return_infdata` argument converts HDDM results into the InferenceData 239

structure 4 , accessible via `model.infdata`, by default set to `False` to maintain 240

compatibility with original HDDM output. Additionally, we have included `loglike` for 241

computing and saving log-likelihood values (see Section 4.5) and `ppc` for posterior predictive 242

checks (see Section 4.6). When setting ̀ ppc` as ̀ True`, it defaults to generating 500 predictions 243

for each observed data, but users can adjust this by add argument `n_ppc`. 244

Finally, the `save_name` argument specify the path and filename for saving the model 245

and InferenceData, which is convenient for reusing results. 246

4. Example of Workflow 247

In this section (bottom panel of Figure 2), we demonstrate how to use dockerHDDM (i.e., HDDM 248

and Arviz) to perform key steps of Bayesian modeling (Gelman et al., 2020; Martin et al., 2021): 249

model specification and fitting, model diagnosis, model comparison, posterior predictive check, 250

3 To run the example notebooks faster, we only use 500 samples here. For a more in-depth understanding of the MCMC settings,

we recommend reading (van de Schoot et al., 2021; Wiecki et al., 2013). The burn-in samples serve to calibrate the fitting, so the

final samples need to exclude burn-in samples, yielding a total of 500 – 100 = 400 samples. Generally, a larger number of

samples improves the estimation accuracy of a model.

4 InferenceData is a more modern data construct that contains prior, posterior, a posterior predictive samples and observed data,

facilitating the visualization and analysis of multiple joint datasets (Hoyer & Hamman, 2017).

Running title: Hitchhiker’s Guide with dockerHDDM

12

and statistical inference. The code reproduced in this section can be found in 251

dockerHDDM_Workflow.ipynb in dockerHDDM environment. 252

4.1. Example data 253

For convenience, we use the data from Cavanagh et al. (2011), which is built within HDDM, as an 254

example to demonstrate how to implement the modeling workflow. This dataset contains reaction 255

time and choice data from 14 Parkinson’s patients (see Table 2). In the experiment, participants 256

were asked to choose between two options associated with either high or low reward values (i.e., 257

reward probabilities in typical reinforcement learning tasks). The relative value differences 258

between the two options define two levels conflict: high conflict for low-low and high-high trials 259

(“HC” in variable “conf”), and low conflict for low-high trials (“LC” in variable “conf”). 260

Table 2 Example dataset from Cavanagh et al. (2011). 261

Subj_idx rt response conf

0 1.21 1.0 HC

0 1.63 1.0 LC

0 1.03 1.0 HC

0 2.77 1.0 LC

0 1.14 0.0 HC

Note: The data structure required for HDDM is long-format data, where each row represents one trial. 262
“subj_idx is” the subject index; “rt” is the response time (in seconds), and “response” in this case represents 263

the accuracy, where is correct and 0 is incorrect. These three columns of data are mandatory when using 264
HDDM and must be kept consistent with the column names, as well as the units (rt, seconds). “conf” is an 265

optional variable, corresponding to the conflict level, and can be varied according to the experimental design. 266

Note that, HDDM requires the inclusion of three columns of variables, “subj_idx”, “rt” and 267

“response”, to construct the hierarchical model. This means that when analyzing your own data, 268

these three columns of variables must appear in the dataset with identical column names. In 269

addition, the unit of “rt” must be seconds, and “response” is coded as 1 for the upper boundary of 270

the corresponding choice and 0 for the lower boundary (see 271

https://hddm.readthedocs.io/en/latest/howto.html for more details). 272

https://hddm.readthedocs.io/en/latest/howto.html

Running title: Hitchhiker’s Guide with dockerHDDM

13

4.2. Model Specification 273

As a demonstration of model specification, we will test an example question: is there an effect of 274

conflict levels on drift rate (see Wiecki et al., 2013). To answer the question, we constructed three 275

computational models (see Table 3). 276

Table 3. Models used in this tutorial. 277

Note: `hddm.HDDM()` is the default function for constructing a hierarchical drift diffusion model. The 278
`include` argument allows the addition of free parameters, which are fixed by default. The `depends_on` 279
argument specifies a parameter (e.g., v) that depends on a categorical independent variable (e.g., ‘conf’). The 280
`hddm.HDDMRegressor()` is a HDDM function that includes effects of conditions in a linear regression 281
fashion. The `keep_regressor_trace` argument allows a trace of the regressor to be kept, which is needed 282
for posterior predictive checks. By default, the hierarchical regression allows only the intercept to vary across 283
participants, while the slope is fixed at the population level. The `group_only_regressors = FALSE` 284
argument additionally estimates the slopes at the individual level in the regression model. 285

Model 0 served as the baseline without considering the effect of conflict level on the model 286

parameters. The model contains the seven parameters, referred to as the full DDM, including the 287

decision boundary (𝑎), drift rate (𝑣), non-decision time (𝑡), and decision bias (𝑧), as well as 𝑠𝑣, 288

𝑠𝑡, and 𝑠𝑧 that indicates the trial-by-trial variations of 𝑣, 𝑡, and 𝑧 (Boehm et al., 2018; Ratcliff 289

& Rouder, 1998; Ratcliff & Tuerlinckx, 2002). By default, HDDM considers the hierarchical 290

modeling approach that includes parameters at both the individual- and the group-level (see Box 291

2). Model 0 has 11 population-level parameters, including the mean and the standard deviation for 292

the four basic parameters (𝑎/𝑣/𝑡/𝑧) and three parameters (𝑠𝑣/𝑠𝑡/𝑠𝑧) for the inter-trial variations. 293

At the individual level, each subject also has a full set of four basic parameters, yielding a total of 294

56 = 14 ∗ 4 parameters. Thus, Model 0 has 11 + 56 = 67 free parameters. 295

Models HDDM functions for defining a model (`df` is the data from Cavanagh et al., 2011) # params

Model 0 hddm.HDDM(df, include=[‘a’, ‘v’, ‘t’, ‘z’, ‘sv’, ‘sz’, ‘st’]) 67

Model 1
hddm.HDDM(df, include=[‘a’, ‘v’, ‘t’,’z’, ‘sv’, ‘st’, ‘sz’],
depends_on={‘v’: ‘conf’})

82

Model 2

hddm.HDDMRegressor(df, “v ~ 1 + C(conf, Treatment(‘LC’))”,
group_only_regressors=False, keep_regressor_trace=True,
include=[‘a’, ‘v’, ‘t’, ‘z’, ‘sv’, ‘st’, ‘sz’])

83

Running title: Hitchhiker’s Guide with dockerHDDM

14

 296

Box 2 Parameters in hierarchical drift-diffusion models

HDDM employs hierarchical Bayesian modelling by default, where each participant’s free
parameters are sampled from population-level distributions (Wiecki et al., 2013). Taking full DDM (Model
0) as an example, non-decision time 𝑡𝑝 is assumed to be drawn from a normal distribution: 𝑡𝑝~𝑁(𝑢𝑡, 𝜎𝑡),

where 𝑢𝑡 and 𝜎𝑡 are the mean and standard deviation of the population-level normal distribution of non-
decision time t. Similarly, 𝑢𝑧/𝑢𝑎/𝑢𝑣 and 𝜎𝑧/𝜎𝑎/𝜎𝑣 are the means and standard deviations for the other three
parameters, respectively. In addition, three free parameters 𝑠𝑡/𝑠𝑣/𝑠𝑎 indicate the trial-by-trial variability of
non-decision time (𝑡), drift rate (𝑣), and initial bias (𝑎), which are estimated only at the population level.
Consequently, there are a total of 11 population-level parameters.

At the subject level, each subject has her own estimate of the parameter of a, v, t, z, leading to a total
of 4 ∗ 𝑝 subject -level parameters. Thus, in the full DDM, the number of parameters is 11 plus 4 ∗ 𝑝.

Figure Ⅰ. The hierarchical structure of the full DDM in HDDM. The parameters inside and

outside the rectangle are subject and population level parameters, respectively. 𝑝/𝑖 are the
indices of participants (𝑝 = 1, 2, . . . , 𝑃) and trials (𝑖 = 1, 2, … . 𝑁), where 𝑥𝑖,𝑝 is the data

(choice/reaction time) of the i-th trial in the p-th subject.

HDDM also allows parameters to vary with variables by integrating hierarchical linear regression
models (also called linear mixed models or multi-level models). Specifically, the
`hddm.HDDMRegressor()` function allows any or all of the four parameters of DDM (a, v, t, z) to be
modelled as a function of experimental conditions or other variables (e.g., EEG signal). In HDDM, the
regression models are defined using the Python package patsy (see
https://patsy.readthedocs.io/en/latest/quickstart.html), which uses the same syntax for defining regression
functions as in other commonly used statistical packages. For example, in Model 2 in the main text, we used
the expression ̀ v ~ 1 + C(conf, Treatment(‘LC’))`, where the term to the left of “~” is the dependent
variable and the term to the right of “~” is the regression equation. The term ‘1’ refers to the intercept, which
corresponds to the variable 𝑣_𝐼𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡 in the output. The term ‘C(conf, Treatment(‘LC’))’ indicates the
slope coefficient, which corresponds to the variable 𝑣_𝐶(𝑐𝑜𝑛𝑓, 𝑇𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡(‘𝐿𝐶’))[𝑇. 𝐻𝐶] . As in other
hierarchical regression models, both the intercept and the slope can be estimated at the population level and
the subject level (referred to as “fixed effects” and “random effects” or “varying effects” respectively, Johnson
et al., 2017; Pedersen & Frank, 2020; Wiecki et al., 2013), depending on how the model is specified. In
`hddm.HDDMRegressor()`, the default is hierarchical model with random intercept but no random slope. We
need to set ` group_only_regressors=False `to include the random slope (as we did int Model 2).

 = 1, ,
 = 1, ,

 ,

 ull DDM hddm. (data, nc ude , v , , t)

https://patsy.readthedocs.io/en/latest/quickstart.html

Running title: Hitchhiker’s Guide with dockerHDDM

15

Model 1 allows the drift rate to vary as a function of the conflict levels (i.e., 297

`depends_on={‘v’: ‘conf’}` in HDDM). Specifically, Model 1 sets two drift rate variables 298

each for low and high conflict levels at the both population- and individual-level, respectively. 299

Thus, Model 1 has 12 population-level parameters: the mean and standard deviation for 𝑎, 𝑡, and 300

𝑧; two mean (“v_(LC)” and “v_(HC)”) and one standard deviation for 𝑣; and three inter-trial 301

variability parameters (𝑠𝑣/𝑠𝑡/𝑠𝑧). Similarly, at the individual level, there are 5 (𝑣𝐿𝐶/𝑣𝐻𝐶/𝑡/𝑧/𝑎) x 302

14 (subjects) = 70 individual-level parameters. Thus, Model 1 has a total of 82 free parameters. 303

Note that Model 1 assumes complete independence between high and low conflict levels 304

within subjects. This assumption may be inappropriate because it is likely that a person who 305

responded relatively fast in the “LC” condition will also be responded relatively fast in the “HC” 306

condition and vice versa. 307

Model 2 was constructed to include correlations between drift rate across conflicting levels. 308

In Model 2, we use a hierarchical regression model with `hddm.HDDMRegressor()` by using 309

the formula ̀ v ~ 1 + C(conf, Treatment(‘LC’))` (see Box 2 and Box 4). This formulation 310

automatically assigns two free parameters, the intercept and slope, to each subject. Thus, there are 311

5 ∗ 14 = 70 individual-level parameters in Model 2. Accordingly, Model 2 has four parameters 312

for v: “v_Intercept” and “v_Intercept_std” are the mean and standard deviation of the intercept; 313

“v_C(conf)[T.HC]” and “v_C(conf)[T.HC]_std” are the mean and standard deviation of the slope. 314

Therefore, Model 2 has 13 population-level parameters: the mean and standard deviation for 𝑎, 𝑡, 315

and 𝑧; the mean and standard deviation of the slope and the intercept of the regression for 𝑣; and 316

three inter-trial variability parameters (𝑠𝑣/𝑠𝑡/𝑠𝑧). Taken together, Model 2 has a total of 13 + 70 = 317

83 free parameters. 318

4.3. Model Fitting 319

The defined HDDM model allows the MCMC algorithm to be run using the `.sample()` method 320

for model fitting and parameter estimation. The definition and fitting of Model 2 are used here as 321

an example (see <Code Block 2>): 322

<Code Block 2> 323

```Python 324 

# define a model by hddm.HDDMRegressor 325 

m2 = hddm.HDDMRegressor( 326 

 df, 'v ~ C(conf, Treatment('LC'))',  327 



Running title: Hitchhiker’s Guide with dockerHDDM 

16 

 group_only_regressors = False,  328 

 keep_regressor_trace = True,  329 

 include=['a', 'v', 't', 'z', 'sv', 'st', 'sz']) 330 

# fitting model and return InferenceData 331 

m2_infdata = m2.sample( 332 

 10000, chains = 4, save_name = 'm2',  333 

 loglike = True, ppc = True, return_infdata = True) 334 

``` 335 

To accurately estimate parameters and ensure convergence in hierarchical modeling, we 336

set up four MCMC chains of 10,000 samples with 5,000 burn-ins (i.e., a total of 20,000 samples 337

for each parameter). Please refer to Section 3 for the more detailed settings and arguments 338

description. 339

With the new functionality introduced by dockerHDDM, we can calculate the log-340

likelihood of the model and generate posterior predictions after model fitting. Furthermore, the 341

output of the model fitting can be converted into InferenceData, `m2_infdata`, for subsequent 342

analyses as described in Section 3. 343

4.4. Model Diagnosis 344

In Bayesian inference, it is crucial to ensure the convergence of MCMC chains. With ArivZ, 345

dockerHDDM supports both visual inspection and quantitative convergence checks (see Section 346

2.4 in Martin et al., 2021). 347

`az.plot_trace()` can be used to visualize the posterior distributions of parameters 348

(i.e., trace plots of the MCMC, Figure 5A). 349

The Gelman-Rubin statistics (�̂�), and effective sample size (ESS) provide quantitative 350

measures (see Box 1). 351

`az.rhat()`computes �̂�, which should be close to 1 for good convergence; values 352

below 1.01 are typically recommended (Gelman & Rubin, 1992). 353

`az.ess()` calculates ESS, a measure of the precision of posterior estimates. If the ESS-354

bulk is over 400, the distribution’s center is well-resolved, and we should ensure high ESS across 355

all regions of the parameter space (Martin et al., 2021; Vehtari et al., 2021). 356

The latter two methods are covered by ArviZ’s `az.summary()` (Figure 5B). 357

Running title: Hitchhiker’s Guide with dockerHDDM

17

Figure 5. Model diagnosis. (A) Visualization of the traces of all chains using 358
`az.plot_trace()`, with the argument `var_names` set to focus on the parameter 359
“V_Intercept” as an example. `compact=False` and `legend=True` ensured that the 360
individual traces of each chain would be visible. The MCMC chains are valid and reliable when 361
they fluctuate around a value and different chains are indistinguishable from each other, a 362
scenario often referred to as a “caterpillar” shape. (B) Output of `az.summary()`, which 363
includes the mean and standard deviation of the Monte Carlo standard error (MCSE), the effective 364

sample sizes (bulk-ESS and tail-ESS), and �̂�. Note that the summary data frame has been sorted 365

by �̂� so that we can easily compare the minimum and maximum values of �̂�. 366

4.5. Model Comparison 367

Upon verifying chain convergence, we proceed with model comparison to identify the best-fitting 368

model. The evaluation metric provided in the original HDDM is deviance information criterion 369

 ummar tm a ummar (
m nfdata, k nd d a no t c , round to)

 ummar tm ort va ue (r at , a cend n) ead(1)

a e a ot trace(
m nfdata, var name v nterce t ,
com act , e end , f e 1 ,)

Running title: Hitchhiker’s Guide with dockerHDDM

18

(DIC, Spiegelhalter, Best, Carlin, & Linde, 2002). We include two more methods in dockerHDDM: 370

widely applicable information criterion (WAIC, Watanabe, 2010) and Pareto-smoothed 371

importance sampling leave-one-out cross-validation (PSIS-LOO-CV, Vehtari, Gelman, & Gabry, 372

2017). These methods comprehensively integrate posterior samples for model comparison and 373

evaluation (see Box 3). 374

For the demonstration, we compared three models across all three evaluation metrics 375

(lower value is better)5. As shown in Table 4, Model 2 exhibits the lowest values on all three 376

5 DIC can be extracted directly from the model rather than InferenceData, e.g. `m0.dic`.

Box 3. Linking DIC, WAIC, and PSIS-LOO-CV to AIC

The Deviance Information Criterion (DIC), Widely Applicable Information Criterion (WAIC), and
Pareto-Smoothed Importance Sampling Leave-One-Out Cross-Validation (PSIS-LOO-CV) are criteria
founded on the concept of out-of-sample predictive accuracy, i.e., the accuracy of using the fitted model to
predict new data generated by the assumed data-generating process. Predictive accuracy is often encapsulated
by the log predictive density (Box 1). However, the log predictive density approximated using the observed
data and the posterior estimates of parameters is a biased, an adjustment is required to correct the bias. Thus,
the key difference between DIC, WAIC and PSIS-LOO-CV lies in the difference between the two terms of
log predicted density and corrected bias (see the table below).

DIC uses the Bayesian posterior means for estimating log predictive density and includes an
adjustment based on the effective number of parameters (𝑃𝐷𝐼𝐶). It is particularly suited for hierarchical models,
offering an improved estimate of predictive density (Spiegelhalter, Best, Carlin, & Van Der Linde, 2002).

WAIC further refines DIC, evaluating the log predictive density across the entire posterior and
correcting bias via the variability of log predictive density (�̂�𝑊𝐴𝐼𝐶). This adjustment is crucial for measuring
model robustness and guarding against overfitting (Watanabe, 2010).

PSIS-LOO-CV estimates the predictive density by simulating the leave-one-out cross-validation,
which by definition is the out-of-sample predictive accuracy, so bias correction is no longer needed for PSIS-
LOO-CV. Please see Gelman, Hwang, & Vehtari (2014) and Vehtari, Gelman, & Gabry (2017) for more
details on these three indices.

 Predictive accuracy Adjustment Formula

AIC 𝑙𝑜𝑔 𝑝(𝑦 | 𝜃𝑚𝑙𝑒) k −2 (𝑙𝑜𝑔 𝑝(𝑦| 𝜃𝑚𝑙𝑒) − 𝑘)

DIC 𝑙𝑜𝑔 𝑝(𝑦 | 𝜃𝐵𝑎𝑦𝑒𝑠
̂) 𝑃𝐷𝐼𝐶 −2 (𝑙𝑜𝑔 𝑝(𝑦| 𝜃𝐵𝑎𝑦𝑒𝑠

̂) − 𝑃𝐷𝐼𝐶)

WAIC 𝑙𝑝�̂� �̂�𝑊𝐴𝐼𝐶 −2 (𝑙𝑝�̂� − �̂�𝑊𝐴𝐼𝐶)

PSIS-LOO-CV 𝑒𝑙𝑝�̂�𝑝𝑠𝑖𝑠−𝑙𝑜𝑜 N.A. −2 𝑒𝑙𝑝𝑑𝑝𝑠𝑖𝑠−𝑙𝑜𝑜

Note: 𝑙𝑝�̂�, computed log pointwise predictive density, see Glossary for details; 𝑒𝑙𝑝�̂�𝑝𝑠𝑖𝑠−𝑙𝑜𝑜 expected log

pointwise predictive density for a new dataset based on PSIS-LOO method. k represents the count of model

parameters. 𝑃𝐷𝐼𝐶 is the DIC’s adjustment for the effective number of parameters (Spiegelhalter, Best,

Carlin, & Van Der Linde, 2002). �̂�𝑊𝐴𝐼𝐶 is the WAIC’s approach to adjusting the effective number of

parameters (Watanabe, 2010).

Running title: Hitchhiker’s Guide with dockerHDDM

19

metrics, indicating it is the best model. The results of model comparison revealed that Models 1 377

and 2 are much better than the baseline Model 0, suggesting that experimental conflict conditions 378

have a substantial effect on drift rates. Moreover, Models 2 is slightly better than Model 1, 379

suggesting that regression model may suit the data better. Nevertheless, the similarities between 380

Model 1 and Model 2 suggests that both models fit the data adequately in this case. 381

Table 4. Model comparison with different criteria. 382

* Rank is from the best model to the worst. Models 0 to 2 are referred to as m0 to m2. 383

Note that WAIC and PSIS-LOO-CV require the pointwise log-likelihood of each data point 384

given a posterior sample of parameters, which must be computed using the likelihood function and 385

posterior trace (see Box 3). This variable is not directly provided in the HDDM object and must 386

be customized to be computed via the likelihood function and the posterior trace. 387

In dockerHDDM, the pointwise log-likelihood can be computed at sampling and fitting 388

stage, via `m.sample(... , retutn_infdata = True, loglike = True)` (see <Code 389

Block 2>), or after the model has been sampled and fitted, by `m.to_infdata(loglike = 390

True)`. Both ways return InferenceData, allowing users to immediately compute WAIC and 391

PSIS-LOO-CV. After that, the evaluation metrics for each model’s InferenceData are available 392

using ArviZ’s `compare` method (see <Code Block 3>), which returns the results of WAIC for 393

the argument `ic=“waic”` or PSIS-LOO-CV for `ic=“loo”`. 394

<Code Block 3> 395

```Python 396 

compare_dict = { 397 

 'm0': m0_infdata,  398 

 'm1': m1_infdata, 399 

 'm2': m2_infdata 400 

} 401 

az.compare(compare_dict, ic = 'loo') 402 

``` 403 

Rank* DIC PSIS-LOO-CV WAIC

1 m2 (10654.89) m2 (10646.25) m2 (10646.20)

2 m1 (10655.24) m1 (10647.21) m1 (10647.15)

3 m0 (10835.24) m0 (10824.93) m0 (10824.89)

Running title: Hitchhiker’s Guide with dockerHDDM

20

Finally, it’s important to note that the model comparison metrics only allow us a relative 404

ranking of alternatives. To assess the absolute goodness-of-fit of the model, we recommend 405

performing the posterior predictive check (PPC), as discussed in the next section, alongside the 406

diagnostic information provided by LOO and WAIC (see Martin et al., 2021). 407

Figure 6. Posterior predictive check plot `az.plot_ppc()` for Model 0 “m0” and Model 2 408
“m2”. Solid black lines are the density plot of the observed RT data; blue lines are the posterior 409
predictive samples, each line represents the predicted RT distribution based on one posterior 410
predictive sample; yellow dashed lines represent the mean of all predicted RT distributions across 411
all posterior predictive samples. (A) shows the results of the comparison between the two models 412
(m0 vs. m2) at the individual level (subjects 3 and 11 as an example); (B) shows the results of 413
the comparison at the condition level (i.e., “LC” represents lower conflict and “HC” represents 414
higher conflict). All plots in the left column are for m0 and all plots in the right column are for 415
m2. Note that the argument `coords` specifies the PPC level (individual or group level) that 416
should be preprocessed before plotting. `num_pp_samples` is used to set the number of 417
predictive data required for plotting. 418

a e a ot c(
m nfdata, var name rt ,
coord o d ,11 ,
num am e 1 , f atten)

a e a ot c(
m nfdata, var name rt ,
coord o d ,11 ,
num am e 1 , f atten)

a e a ot c(
m nfdata, var name rt ,
coord o d LC , C ,
num am e 1 , f atten)

a e a ot c(
m nfdata, var name rt ,
coord o d LC , C ,
num am e 1 , f atten)

Running title: Hitchhiker’s Guide with dockerHDDM

21

4.6. Posterior Predictive Check 419

In addition to model comparison, which assesses relative performance, the posterior predictive 420

check (PPC) evaluates how well synthetic data generated from posterior samples of parameters 421

align with the actual data. PPC is crucial because model comparison only evaluates the “least worst” 422

model, not necessarily selects the one that can account for the data very well (see Pedersen, Frank, 423

& Biele, 2017; Steingroever, Wetzels, & Wagenmakers, 2014). 424

ArviZ offers convenient visualization tools for inspecting PPC (see section 2.3 in Martin 425

et al., 2021). The function `az.plot_ppc()` is helpful to visualize PPC at the individual or 426

condition level (Figure 6). In the demonstration, the synthetic data from Model 2 match more 427

closely the actual data compared to the baseline Model 0, and this difference becomes apparent 428

when examining PPC at the individual- (Figure 6A) and condition-level (Figure 6B). 429

4.7. Statistical Inference 430

A final step in Bayesian modeling is to draw statistical inferences from the posterior parameter 431

distributions in the best-fitting model. In our example, we will test the hypothesis whether drift 432

rates significantly differ between high and low conflict conditions based on Model2 (“m2” in the 433

Notebook). This hypothesis will be tested using the posterior samples of the regression coefficient 434

in “m2”, which has a variable name “v_C(conf, Treatment(‘LC’))[T.HC]”. 435

Note that there are several acceptable methods for Bayesian hypothesis testing, such as 436

probability of direction, Bayes factor, and Maximum a posteriori (MAP) based p-value (Makowski 437

et al., 2019). Here we adopted the approach combining Highest Density Interval (HDI) and the 438

Region of Practical Equivalence (ROPE, Kruschke, 2018) (see Box 1). 439

We define a ROPE of [-0.2, 0.2] to represent values practically equivalent to zero6 and use 440

`plot_posterior()` function from ArviZ to implement ROPE test. By comparing the 95% 441

HDI of the regression coefficient to this ROPE, we find that the HDI falls completely outside the 442

6 The ROPE should be tailored to the specific paradigm and research question (Dienes, 2021) and reflect the range of possible

values for each parameter (e.g., Tran et al., 2021). For example, a recent systematic parameter review of DDM found that the

absolute value of a drift rate ranged from 0.01 to 18.51, with a median of 2.25 (Tran et al., 2021); another simulation and meta-

analysis of conflict tasks showed that a drift rate between 0.05 and 0.35 captured the conflict effect (Hedge et al., 2018).

Accordingly, we choose ROPE [-0.2 0.2] for illustrative purposes, implying that effects on drift rates smaller than 0.2 are not of

interest.

Running title: Hitchhiker’s Guide with dockerHDDM

22

ROPE (Figure 7A), suggesting that the drift rate is higher in the low conflict condition than the 443

high conflict condition (Figure 7B). 444

Therefore, considering the results from various aspects (model comparison, ppc, and 445

posterior inference), we conclude that the model which takes into account the influence of conflict 446

level on drift rate performs the best. Moreover, high conflict affects the cognitive process of 447

decision-making by impeding the speed of evidence accumulation. 448

Figure 7. (A) Statistical inference of parameters. The high-density interval (HDI, black line and 449
texts) is compared with the region of practical equivalence (ROPE, red line and text). 450
`var_names` argument can be used to select both group-level and individual-level parameters 451
for analysis. `hdi_prob ` argument specifies the probability of the HDI, typically set at 0.95 452
to correspond to a 95% confidence interval. `rope` defines the limitations of ROPE, which is a 453
range considered to be equivalent to the null hypothesis or a reference value for the parameter. 454
The results show no overlap between the 95% HDI and the ROPE, indicating that the parameter 455
is credibly different from zero. (B) Violin plot of parameter posteriors at two conflict levels. The 456
black line is the 95% HDI and the white dot is the mean. The drift rate is lower in high conflict 457
(HC) than in low conflict (LC) conditions. 458

a ot o ter or(
m nfdata,
var name (v C(conf,Treatment(LC)) T C),
k nd t , d ro ,
ro e , , ro e co or r)

a ot v o n(
m nfdata,
var name (v LC , v C))

Running title: Hitchhiker’s Guide with dockerHDDM

23

 459

Summary 460

In this article, we introduce dockerHDDM, a user-friendly, out-of-the-box, and one-stop Docker 461

image for implementing HDDM analysis within a modern Bayesian hierarchical workflow. Our 462

dockerHDDM has three major advantageous: (1) it leverages Docker to solve compatibility issues 463

and simplify the installation process; (2) it ensures broad support across different machines 464

equipped with either Intel or Apple chips; and (3) it integrates state-of-the-art Bayesian modeling 465

practices with ArviZ, facilitating a more principled Bayesian workflow. We also provide a step-466

by-step tutorial on how to implement HDDM using dockerHDDM. As HDDM continues to 467

advance, with recent developments including reinforcement learning DDM (Pedersen & Frank, 468

2020; Pedersen, Frank, & Biele, 2017) and likelihood approximation networks (LANs, Fengler et 469

al., 2022, 2021), dockerHDDM will serve as a critical tutorial for computational reproducibility 470

for published studies. Given the extensive knowledge required for principled computational 471

modelling, we recommend readers go through materials in Box 4 for a deeper understanding of 472

the DDM family, cognitive modeling, hierarchical models, and Bayesian modeling. We expect 473

Box 4. Recommendation for Further Reading

A full understanding of how Bayesian hierarchical drift-diffusion modeling works requires not only basic
knowledge of DDM, but also knowledge of Python programming, Bayesian statistics, and hierarchical regression
models. This background knowledge is generally not part of the coursework in psychology or neuroscience
education, although the situation is changing in recent years (e.g., Hart et al., 2022). We recommend the following
resources to quickly catch up and avoid misuse or abuse of HDDM.

Background knowledge/skills Resource

Bayesian statistics
Etz & Vandekerckhove, 2018; Kruschke & Liddell, 2018; Lambert,
2018; Martin, Kumar, & Lao, 2021; van de Schoot et al., 2021.

(Bayesian) Hierarchical (regression)
models

https://twiecki.io/blog/2014/03/17/bayesian-glms-3/;
https://github.com/lei-zhang/BayesCog_Wien
Capretto et al., 2020

Computational modeling
Blohm, Kording, & Schrater, 2020; Wilson & Collins, 2019; Zhang,
Lengersdorff, Mikus, Gläscher, & Lamm, 2020.

Drift Diffusion Models Ratcliff & McKoon, 2008; Voss, Nagler, & Lerche, 2013.

Sequential sampling models beyond
DDMs

Fengler, Bera, Pedersen, & Frank, 2022; Ratcliff et al., 2016.

https://twiecki.io/blog/2014/03/17/bayesian-glms-3/
https://github.com/lei-zhang/BayesCog_Wien

Running title: Hitchhiker’s Guide with dockerHDDM

24

that dockerHDDM and this detailed tutorial will reduce the technical burden and promote the 474

computational reproducibility of drift-diffusion modeling for users of all levels of computational 475

expertise. 476

 477

Code Availability 478

The software, data, and scripts (Jupyter notebooks) used to generate the models and results 479

described in this article are available at https://hub.docker.com/r/hcp4715/hddm. Readers can pull 480

the entire image from Docker hub after successfully installing Docker desktop (for MacOS and 481

Windows) or Docker engine (for Linux) and using the following code in a terminal (Linux or 482

MacOS) or Windows (power) shell: 483

`docker pull hcp4715/hddm` 484

Alternatively, readers can find our online notebook here: 485

https://github.com/hcp4715/dockerHDDM/. Readers can also find the code that created our 486

dockerHDDM images at https://github.com/hcp4715/dockerHDDM/dockerfiles/. Any questions 487

about this tutorial or related dockerHDDM images can be posted and discussed here: 488

https://github.com/hcp4715/dockerHDDM/issues. 489

 490

Conflict of Interest 491

The authors declare no competing financial interests. 492

 493

Acknowledgments 494

This work was supported by the National Natural Science Foundation of China (32100901) and 495

Natural Science Foundation of Shanghai (21ZR1434700) to R-Y. Z. 496

 497

Author Contributions 498

H. C-P., H.G., L.Z., and R-Y.Z. conceived and designed the study. W.P. & H. C-P. implemented 499

and maintain the dockerHDDM Docker image. H. C-P., H.G., and R-Y.Z. made the first draft of 500

the manuscript. W.P., H. C-P., and R-Y.Z. re-organized the draft since version 7 of the preprint. 501

All authors edited the manuscript. 502

 503

https://hub.docker.com/r/hcp4715/hddm
https://github.com/hcp4715/dockerHDDM/
https://github.com/hcp4715/dockerHDDM/dockerfiles/
https://github.com/hcp4715/dockerHDDM/issues

Running title: Hitchhiker’s Guide with dockerHDDM

25

References 504

Boehm, U., Annis, J., Frank, M. J., Hawkins, G. E., Heathcote, A., Kellen, D., Krypotos, A.-M., 505

Lerche, V., Logan, G. D., Palmeri, T. J., van Ravenzwaaij, D., Servant, M., Singmann, H., 506

Starns, J. J., Voss, A., Wiecki, T. V., Matzke, D., & Wagenmakers, E.-J. (2018). Estimating 507

across-trial variability parameters of the Diffusion Decision Model: Expert advice and 508

recommendations. Journal of Mathematical Psychology, 87, 46–75. 509

https://doi.org/10.1016/j.jmp.2018.09.004 510

Cavanagh, J. F., Wiecki, T. V., Cohen, M. X., Figueroa, C. M., Samanta, J., Sherman, S. J., & 511

Frank, M. J. (2011). Subthalamic nucleus stimulation reverses mediofrontal influence over 512

decision threshold. Nature Neuroscience, 14(11), 1462–1467. 513

https://doi.org/10.1038/nn.2925 514

Desai, N., & Krajbich, I. (2022). Decomposing preferences into predispositions and evaluations. 515

Journal of Experimental Psychology: General, 151(8), 1883–1903. 516

https://doi.org/10.1037/xge0001162 517

Dienes, Z. (2021). Obtaining Evidence for No Effect. Collabra: Psychology, 7(1), 28202. 518

https://doi.org/10.1525/collabra.28202 519

Evans, N. J., & Wagenmakers, E.-J. (2019). Theoretically meaningful models can answer 520

clinically relevant questions. Brain, 142(5), 1172–1175. 521

https://doi.org/10.1093/brain/awz073 522

Fengler, A., Bera, K., Pedersen, M. L., & Frank, M. J. (2022). Beyond Drift Diffusion Models: 523

Fitting a Broad Class of Decision and Reinforcement Learning Models with HDDM. 524

Journal of Cognitive Neuroscience, 34(10), 1780–1805. 525

https://doi.org/10.1162/jocn_a_01902 526

Fengler, A., Govindarajan, L. N., Chen, T., & Frank, M. J. (2021). Likelihood approximation 527

networks (LANs) for fast inference of simulation models in cognitive neuroscience. eLife, 528

10, e65074. https://doi.org/10.7554/eLife.65074 529

Forstmann, B. U., Ratcliff, R., & Wagenmakers, E.-J. (2016). Sequential Sampling Models in 530

Cognitive Neuroscience: Advantages, Applications, and Extensions. Annual Review of 531

Psychology, 67(1), 641–666. https://doi.org/10.1146/annurev-psych-122414-033645 532

Gelman, A., & Rubin, D. B. (1992). Inference from Iterative Simulation Using Multiple 533

Sequences. Statistical Science, 7(4). https://doi.org/10.1214/ss/1177011136 534

Running title: Hitchhiker’s Guide with dockerHDDM

26

Gelman, A., Vehtari, A., Simpson, D., Margossian, C. C., Carpenter, B., Yao, Y., Kennedy, L., 535

Gabry, J., Bürkner, P.-C., & Modrák, M. (2020). Bayesian Workflow. arXiv:2011.01808 536

[Stat]. http://arxiv.org/abs/2011.01808 537

Ging-Jehli, N. R., Ratcliff, R., & Arnold, L. E. (2021). Improving neurocognitive testing using 538

computational psychiatry—A systematic review for ADHD. Psychological Bulletin, 147(2), 539

169–231. https://doi.org/10.1037/bul0000319 540

Hedge, C., Powell, G., Bompas, A., Vivian-Griffiths, S., & Sumner, P. (2018). Low and variable 541

correlation between reaction time costs and accuracy costs explained by accumulation 542

models: Meta-analysis and simulations. Psychological Bulletin, 144(11), 1200–1227. 543

https://doi.org/10.1037/bul0000164 544

Herz, D. M., Tan, H., Brittain, J.-S., Fischer, P., Cheeran, B., Green, A. L., FitzGerald, J., Aziz, 545

T. Z., Ashkan, K., Little, S., Foltynie, T., Limousin, P., Zrinzo, L., Bogacz, R., & Brown, P. 546

(2017). Distinct mechanisms mediate speed-accuracy adjustments in cortico-subthalamic 547

networks. eLife, 6, e21481. https://doi.org/10.7554/eLife.21481 548

Herz, D. M., Zavala, B. A., Bogacz, R., & Brown, P. (2016). Neural Correlates of Decision 549

Thresholds in the Human Subthalamic Nucleus. Current Biology, 26(7), 916–920. 550

https://doi.org/10.1016/j.cub.2016.01.051 551

Hoyer, S., & Hamman, J. (2017). xarray: N-D labeled Arrays and Datasets in Python. Journal of 552

Open Research Software, 5(1), Article 1. https://doi.org/10.5334/jors.148 553

Hu, C.-P., Lan, Y., Macrae, C. N., & Sui, J. (2020). Good Me Bad Me: Does Valence Influence 554

Self-Prioritization During Perceptual Decision-Making? In Collabra-Psychology (Vol. 6, 555

Issue 1, p. 20). https://doi.org/10.1525/collabra.301 556

Johnson, D. J., Hopwood, C. J., Cesario, J., & Pleskac, T. J. (2017). Advancing Research on 557

Cognitive Processes in Social and Personality Psychology: A Hierarchical Drift Diffusion 558

Model Primer. Social Psychological and Personality Science, 8(4), 413–423. 559

https://doi.org/10.1177/1948550617703174 560

Kruschke, J. K. (2018). Rejecting or Accepting Parameter Values in Bayesian Estimation. 561

Advances in Methods and Practices in Psychological Science, 1(2), 270–280. 562

https://doi.org/10.1177/2515245918771304 563

Kruschke, J. K. (2021). Bayesian Analysis Reporting Guidelines. Nature Human Behaviour, 5, 564

1282–1291. https://doi.org/10.1038/s41562-021-01177-7 565

Running title: Hitchhiker’s Guide with dockerHDDM

27

Kumar, R., Carroll, C., Hartikainen, A., & Martin, O. (2019). ArviZ a unified library for 566

exploratory analysis of Bayesian models in Python. Journal of Open Source Software, 567

4(33), 1143. https://doi.org/10.21105/joss.01143 568

Kutlikova, H. H., Zhang, L., Eisenegger, C., van Honk, J., & Lamm, C. (2023). Testosterone 569

eliminates strategic prosocial behavior through impacting choice consistency in healthy 570

males. Neuropsychopharmacology, 48(10), Article 10. https://doi.org/10.1038/s41386-023-571

01570-y 572

Makowski, D., Ben-Shachar, M. S., Chen, S. H. A., & Lüdecke, D. (2019). Indices of effect 573

existence and significance in the bayesian framework. Frontiers in Psychology, 10, 2767. 574

https://doi.org/10.3389/fpsyg.2019.02767 575

Martin, O. A., Kumar, R., & Lao, J. (2021). Bayesian Modeling and Computation in Python. 576

Chapman and Hall/CRC. https://doi.org/10.1201/9781003019169 577

Pedersen, M. L., & Frank, M. J. (2020). Simultaneous Hierarchical Bayesian Parameter 578

Estimation for Reinforcement Learning and Drift Diffusion Models: A Tutorial and Links to 579

Neural Data. Computational Brain & Behavior, 3, 458–471. https://doi.org/10.1007/s42113-580

020-00084-w 581

Pedersen, M. L., Frank, M. J., & Biele, G. (2017). The drift diffusion model as the choice rule in 582

reinforcement learning. Psychonomic Bulletin & Review, 24(4), 1234–1251. 583

https://doi.org/10.3758/s13423-016-1199-y 584

Pedersen, M. L., Ironside, M., Amemori, K., McGrath, C. L., Kang, M. S., Graybiel, A. M., 585

Pizzagalli, D. A., & Frank, M. J. (2021). Computational phenotyping of brain-behavior 586

dynamics underlying approach-avoidance conflict in major depressive disorder. PLOS 587

Computational Biology, 17(5), e1008955. https://doi.org/10.1371/journal.pcbi.1008955 588

Peikert, A., & Brandmaier, A. M. (2021). A Reproducible Data Analysis Workflow With R 589

Markdown, Git, Make, and Docker. Quantitative and Computational Methods in Behavioral 590

Sciences, 1, e3763. https://doi.org/10.5964/qcmb.3763 591

Ratcliff, R., & Rouder, J. N. (1998). Modeling Response Times for Two-Choice Decisions. 592

Psychological Science, 9(5), 347–356. https://doi.org/10.1111/1467-9280.00067 593

Ratcliff, R., Smith, P. L., Brown, S. D., & McKoon, G. (2016). Diffusion Decision Model: 594

Current Issues and History. Trends in Cognitive Sciences, 20(4), 260–281. 595

https://doi.org/10.1016/j.tics.2016.01.007 596

Running title: Hitchhiker’s Guide with dockerHDDM

28

Ratcliff, R., & Tuerlinckx, F. (2002). Estimating parameters of the diffusion model: Approaches 597

to dealing with contaminant reaction times and parameter variability. Psychonomic Bulletin 598

& Review, 9(3), 438–481. https://doi.org/10.3758/bf03196302 599

Shadlen, M. N., & Shohamy, D. (2016). Decision Making and Sequential Sampling from 600

Memory. Neuron, 90(5), 927–939. https://doi.org/10.1016/j.neuron.2016.04.036 601

Sheng, F., Ramakrishnan, A., Seok, D., Zhao, W. J., Thelaus, S., Cen, P., & Platt, M. L. (2020). 602

Decomposing loss aversion from gaze allocation and pupil dilation. Proceedings of the 603

National Academy of Sciences, 117(21), 11356–11363. 604

https://doi.org/10.1073/pnas.1919670117 605

Spiegelhalter, D. J., Best, N. G., Carlin, B. P., & Linde, A. V. D. (2002). Bayesian measures of 606

model complexity and fit. Journal of the Royal Statistical Society: Series B (Statistical 607

Methodology), 64(4), 583–639. https://doi.org/10.1111/1467-9868.00353 608

Steingroever H., Wetzels R., & Wagenmakers E.-J. (2014). Absolute performance of 609

reinforcement-learning models for the iowa gambling task. Decision, 1(3), 161–183. 610

https://doi.org/10.1037/dec0000005 611

Tran, N.-H., Van Maanen, L., Heathcote, A., & Matzke, D. (2021). Systematic Parameter 612

Reviews in Cognitive Modeling: Towards a Robust and Cumulative Characterization of 613

Psychological Processes in the Diffusion Decision Model. Frontiers in Psychology, 11, 614

608287. https://doi.org/10.3389/fpsyg.2020.608287 615

van de Schoot, R., Depaoli, S., King, R., Kramer, B., Märtens, K., Tadesse, M. G., Vannucci, M., 616

Gelman, A., Veen, D., Willemsen, J., & Yau, C. (2021). Bayesian statistics and modelling. 617

Nature Reviews Methods Primers, 1(1), Article 1. https://doi.org/10.1038/s43586-020-618

00001-2 619

Vehtari, A., Gelman, A., & Gabry, J. (2017). Practical Bayesian model evaluation using leave-620

one-out cross-validation and WAIC. Statistics and Computing, 27(5), 1413–1432. 621

https://doi.org/10.1007/s11222-016-9696-4 622

Vehtari, A., Gelman, A., Simpson, D., Carpenter, B., & Bürkner, P.-C. (2021). Rank-623

Normalization, olding, and Localization An Improved Rˆ for Assessing Convergence of 624

MCMC (with Discussion). Bayesian Analysis, 16(2), 667–718. https://doi.org/10.1214/20-625

BA1221 626

Running title: Hitchhiker’s Guide with dockerHDDM

29

Voss, A., Nagler, M., & Lerche, V. (2013). Diffusion models in experimental psychology: A 627

practical introduction. Experimental Psychology, 60(6), 385–402. 628

https://doi.org/10.1027/1618-3169/a000218 629

Watanabe, S. (2010). Asymptotic Equivalence of Bayes Cross Validation and Widely Applicable 630

Information Criterion in Singular Learning Theory. The Journal of Machine Learning 631

Research, 11, 3571–3594. 632

Wiebels, K., & Moreau, D. (2021). Leveraging Containers for Reproducible Psychological 633

Research. Advances in Methods and Practices in Psychological Science, 4(2). 634

https://doi.org/10.1177/25152459211017853 635

Wiecki, T. V., Sofer, I., & Frank, M. J. (2013). HDDM: Hierarchical Bayesian estimation of the 636

Drift-Diffusion Model in Python. Frontiers in Neuroinformatics, 7. 637

https://doi.org/10.3389/fninf.2013.00014 638

Zhang, L., Lengersdorff, L., Mikus, N., Gläscher, J., & Lamm, C. (2020). Using reinforcement 639

learning models in social neuroscience: Frameworks, pitfalls, and suggestions of best 640

practices. Social Cognitive and Affective Neuroscience, 15(6), 695–707. 641

https://doi.org/10.1093/scan/nsaa089 642

 643

