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Abstract 43 

Drift diffusion models (DDMs) are pivotal in understand decision-making processes across 44 

psychology, behavioral economics, neuroscience, and psychiatry. Hierarchical drift diffusion 45 

models (HDDM), a Python library for hierarchical Bayesian estimation of DDMs, has been widely 46 

used among researchers, including those with limited coding proficiency, in fitting DDMs and 47 

other sequential sampling models to their data. However, issues of compatibility in installation and 48 

lack of support for more recently Bayesian modeling functionalities poses serious challenges for 49 

new users, limiting broader application of HDDM and reproducibility of research that used HDDM. 50 

To address these issues, we dockerize HDDM and add new functions into dockerHDDM, which 51 

brings three improvements: (1) easy-to-install once docker is installed, ensuring reproducibility 52 

and saving time for researchers; (2) compatible with machine with apple chips; (3) seamlessly 53 

integration with ArviZ, a state-of-the-art Bayesian modeling library. This tutorial serves as a 54 

practical, hands-on guide for researchers to leverage dockerHDDM’s capabilities in conducting 55 

efficient Bayesian hierarchical analysis of DDMs. The notebook presented here and within the 56 

docker image will enable researchers with various programming levels to model their data with 57 

HDDM.  58 

Keywords: HDDM, drift diffusion models, Bayesian hierarchical modeling, Reproducibility, 59 

Docker, Python  60 
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 61 

Box 1. Glossary of Terms Used in Bayesian Modeling 

Prior, or prior distribution, often referred to as 𝑝(𝜃), is the initial belief that researchers have about 
the parameters 𝜃 in a model before observing data. It can be formed either from existing research or from 
pilot data.  

Likelihood, or likelihood function, often referred to as 𝑝(𝑦|𝜃), is the probability of the observed 
data 𝑦 as a function of the specific parameters 𝜃 of a chosen statistical model. For example, the Bernoulli 
function is the likelihood function for statistically describing coin tossing.  

Posterior, or posterior distribution, often referred to as 𝑝(𝜃|𝑦), refers to the updated knowledge 
about the parameters 𝜃  after observing the data 𝑦 , balancing prior knowledge with observed data 
according to the Bayes rule, i.e., 𝑝(𝜃|𝑦) ∝  𝑝(𝑦|𝜃)𝑝(𝜃) . 

Markov chain Monte Carlo (MCMC), is a sampling method to infer the posterior distribution by 
simulation. The Markov chains (usually multiple MCMC chains are required) are algorithmically 
constructed so that their corresponding stationary distribution using MCMC samples approximates the 
posterior distribution of interest. The process of reaching this stationary distribution is called MCMC 
convergence. These sampled parameter values serve as the approximation to the posterior distribution and 
can then be used to obtain empirical estimates of the posterior distribution, and associated summary statistics 
of interest, using Monte Carlo integration. In the literature, a chain (or trace) is referred to as a collection of 
samples (or draws). Traces serve as a basis for diagnosing convergence and/or other potential problems with 
the procedure in a given application. MCMC is particularly useful for models with high complexity.  

Effective sample size (ESS), is the number of independent samples with the same estimation power 
as the N autocorrelated samples from one MCMC chain. ESS is often used to determine whether the number 
of draws in MCMC chains is sufficient to guarantee reliable estimation of uncertainty. An ESS of 100 per 
MCMC chain is recommended by (Vehtari, et al., 2021). 

Gelman-Rubin statistics (�̂�), the ratio of within-chain variability to between-chain variability. 
Values close to 1.0 for all parameters and quantities of interest suggest that the Markov chain Monte Carlo 

algorithm has sufficiently converged to stationary distributions. In practice, a maximum �̂�  of 1.05 is 
acceptable. 

Posterior predictive samples, simulated new data conditional on the posterior distribution. The 
simulated data can then be used to check whether the model can be considered a good fit to the data-
generating mechanism, by comparing the simulation with the observed data. This process is often called 
posterior predictive checks (PPCs).  

Leave-one-out cross-validation (LOO-CV), a model evaluation approach that trains the model on 
all observations except observation 𝑦𝑖, and then predicts the hold-out observation 𝑦𝑖. This procedure is 
repeated for all n observations. 

Log predictive density, 𝑙𝑜𝑔 𝑝(�̃�|𝜃), an overall summary of a model’s predictive abilities by 
estimating the log likelihood of new data �̃� given the true parameters 𝜃. However, since both the new data 
�̃� and the true model parameters θ are typically unavailable in empirical data, the log predictive density is 

approximated using the observed data 𝑦  and the posterior estimates of the parameters 𝜃 , hence 

𝑙𝑜𝑔 𝑝(�̃�|𝜃) ≈ 𝑙𝑜𝑔 𝑝(𝑦|𝜃) . This estimate, when multiplied by -2, gives the deviance, −2 𝑙𝑜𝑔 𝑝(𝑦|𝜃) . 

However, as 𝑙𝑜𝑔 𝑝(𝑦|𝜃) is a biased estimate of 𝑙𝑜𝑔 𝑝(�̃�|𝜃), an adjustment is required to correct the bias. 

Log pointwise predictive density, likelihood of each observed data point conditional on the model 
parameters. In practice, this quantity is estimated using draws from the posterior in Bayesian analysis, i.e., 

the computed log pointwise predictive density: 𝑙𝑝�̂�  =  ∑ 𝑙𝑜𝑔 (
1

𝑆
∑ 𝑝(𝑦𝑖  |𝜃𝑠)𝑆

𝑠=1 )𝑛
𝑖=1  (lpd in Vehtari et al., 

2017, or lppd in Gelman et al., 2014).  
Expected log pointwise predictive density (ELPD), a measure of predictive accuracy for n data 

points generated by the true data generating process. ∑ 𝐸𝑓(𝑙𝑜𝑔 𝑝𝑝𝑜𝑠𝑡(�̃�𝑖))𝑛
𝑖 = 1 , where f is the true model, y 

is the observed data, �̃� denotes future data or alternative datasets that could have been seen, 𝐸𝑓 denotes 

expectation that averages over the distribution of data generating distribution, and 𝑝𝑝𝑜𝑠𝑡 is the posterior 

distribution. This term is also called mean log predictive density. 
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The drift-diffusion model (DDM) is one of the most widely used computational models (Ratcliff 62 

et al., 2016) to quantify decision-making processes in neuroscience (Cavanagh et al., 2011; Herz 63 

et al., 2016, 2017; Shadlen & Shohamy, 2016), psychology (Hu et al., 2020; Johnson et al., 2017; 64 

Kutlikova et al., 2023), behavioral economics (Desai & Krajbich, 2022; Sheng et al., 2020), and 65 

psychiatry (Ging-Jehli, Ratcliff, & Arnold, 2021; Pedersen et al., 2021). According to the DDM 66 

experimentally observed reaction-time choice pairs arise from a process of stochastic evidence 67 

accumulation to a decision boundary (e.g., Voss et al., 2013; Figure 1). This theoretical framework 68 

has been shown not only to correlate robustly with established neural substrates (Forstmann et al., 69 

2016), but also to serve as a powerful measurement tool for examining individual differences 70 

across cognitive tasks, experimental manipulations, and participant populations (Evans & 71 

Wagenmakers, 2019). Despite its theoretical contributions, the DDM is difficult to apply to 72 

experimental data in practice, because the derivation of inference-relevant quantities (e.g., the 73 

likelihood function) requires a mathematical understanding of the complex stochastic process of 74 

evidence accumulation.  75 

Several software packages have been developed to facilitate the application of DDM, 76 

proving particularly beneficial for researchers with limited computational expertise. Among them, 77 

HDDM, a Python library for hierarchical drift diffusion modeling, is by far the most cited toolbox 78 

in the community (Wiecki, Sofer, & Frank, 2013, with 908 citations in Google Scholar, retrieved 79 

on Mar. 20, 2024). Despite the success and popularity of HDDM, it suffers from several practical 80 

issues. First, the installation process of HDDM is cumbersome, exacerbated by its reliance on 81 

PyMC 2.3.8 for Markov Chain Monte Carlo (MCMC) sampling, a package that is no longer 82 

supported and may clash with latest computer modules. Second, and for the same reason, out of 83 

Highest density interval (HDI): an estimate of a parameter's credible range in the context of 
Bayesian statistics. It encompasses an interval of the posterior distribution where each point within this 
interval has a higher density than points outside of it. For instance, a 95% HDI means that there is a 95% 
chance that the true parameter value falls within this range, making it a reliable indicator of parameter 
uncertainty. HDIs are commonly used for hypothesis testing regarding effect sizes, as well as comparisons 
across different conditions or groups.  

A region of practical equivalence (ROPE) represents a predefined range of parameter values that 
are considered practically equivalent to zero, which could be based on existing literature or theoretical 
reasoning (Kruschke, 2018, 2021). To determine whether a parameter estimate is significantly different from 
zero, a ROPE might be set as a range around zero. If the 95% HDI of the parameter lies entirely outside this 
ROPE, the parameter is considered credibly different from zero. If the HDI is entirely within the ROPE, the 
parameter is effectively zero for practical purposes. Partial overlap suggests that the parameter’s result 
should be interpreted with caution. 
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the box HDDM is not compatible with apple chips, which creates a significant barrier for Mac 84 

users. Third, although HDDM natively centers around Bayesian methods, it does not conveniently 85 

support all aspects of the evolved standards in Bayesian modeling workflows (Gelman et al., 2020; 86 

Kruschke, 2021; Zhang et al., 2020). Significant progress has recently been made in supporting 87 

the principled Bayesian modeling workflow in easy-to-use toolkits, such as the Python package 88 

ArviZ (Kumar et al., 2019). Bridging these new capabilities with HDDM facilitates a one-stop 89 

Bayesian modeling pipeline for experimentalists and computational modelers interested in 90 

applying the DDM to their experimental data.  91 

Figure 1. Illustration of the evidence accumulation process assumed by DDM. DDM has four 92 
basic parameters: drift rate (𝑣), decision boundary (𝑎), initial bias (𝑧), and non-decision time (𝑡). 93 
The drift rate (𝑣) is the average speed of evidence accumulation toward a decision; the decision 94 
boundary (𝑎) is the distance between two decision thresholds, and the evidence needed to make 95 
a decision increase as 𝑎 increases; the initial bias (𝑧) reflects the starting point of evidence 96 
accumulation. When 𝑧 is closer to one of the boundaries, less evidence is required for that 97 
decision (conversely more evidence is required for the opposite decision); non-decision time (𝑡) 98 
is the time not used for evidence accumulation, e.g., stimulus encoding or motor execution. A 99 
more complete version of DDM assumes that the values of drift rate, initial bias, and non-decision 100 
time vary across trials due to fluctuations in various psychological and physiological factors (e.g., 101 
attention lapse, arousal), so three additional parameters are included: trial-by-trial variation in 102 
drift rate (𝑠𝑣), variation in the initial bias (𝑠𝑧), and variation in non-decision time (𝑠𝑡). 103 

To address the above issues, we leveraged the Docker container technology to create 104 

dockerHDDM, a stable and complete virtualized Python computing environment that enables out-105 

of-the-box implementations of Bayesian hierarchical drift-diffusion models. dockerHDDM has 106 

three major advantages (Table 1). First, it benefits from the easy-to-deploy nature of the Docker 107 
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environment to avoid compatibility issues. Second, it is compatible with both Intel or Apple chips. 108 

Third, it augments HDDM with ArviZ, a Python module that enables a wide range of advanced 109 

Bayesian modeling analyses. We expect dockerHDDM to provide an easy-to-use environment to 110 

help researchers across various backgrounds efficiently use DDM in their research.  111 

Table 1. Comparisons between dockerHDDM and the original HDDM package 112 

 HDDM dockerHDDM 

Support ArviZ * No Yes 

Plotting (e.g., HDI,) No Yes 

Diagnosis (e.g., ESS) No Yes 

Model Comparison (LOO, WAIC) No Yes 

Installation Hard Easy 

Parallel processing Hard Easy 

Compatibility with Apple chips Hard Easy 

   

* Plotting, diagnosis, and model comparison are functions of ArviZ, including HDI, high-density interval; 113 
ESS, effective sample size, LOO, leave-one-out cross-validation; WAIC, widely applicable information 114 
criterion; PPC, posterior predictive checks. 115 

1. How to Follow This Tutorial 116 

The primary goal of this paper is to present a practical guide to dockerHDDM for beginners with 117 

little modelling experience. The tutorial starts with step-by-step instructions on how to configure 118 

the dockerHDDM environment and how to use it in practical data analysis (Figure 2).  119 

In the setup section (top panel in Figure 2, corresponding to Section 2.1 in this paper), we 120 

provide instructions on how to install Docker. After that, we demonstrate how to obtain the 121 

dockerHDDM image and how to use this image to access the Jupyter notebook interface (middle 122 

panel in Figure 2, corresponding to Sections 2.2 and 2.3). Finally, within a working Jupyter 123 

notebook we show how to analyze an example dataset with dockerHDDM in a principled Bayesian 124 

workflow (bottom panel in Figure 2, corresponding to Section 4).  125 
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Figure 2. Flowchart of how to use dockerHDDM. The top panel describes how to install Docker, 126 
corresponding to Section 2.1; the middle panel describes how to pull and run dockerHDDM, 127 
corresponding to Sections 2.2 and 2.3; and the bottom panel shows the workflow in 128 
dockerHDDM, corresponding to Section 4. In the bottom panel, the green circle represents the 129 
model defined based on the specified data; the purple ellipse represents the InferenceData 130 
obtained after model fitting; the dotted box shows the pseudo code. After model diagnosis, 131 
evaluation and comparison, the optimal model (Model 2 “m2” with “infdata2”) is selected and 132 
used for inferential analysis.  133 
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2. Install and Use dockerHDDM 134 

2.1. Install Docker 135 

Docker serves us to create an all-in-one, fast, cross-platform computing environment (e.g., Peikert 136 

& Brandmaier, 2021; Wiebels & Moreau, 2021). The Docker website provides easy-to-follow 137 

installation instructions (https://docs.docker.com/get-docker/) and supports Windows, MacOS, 138 

and Linux. Windows users should ensure their system version is 21H2 (build 19044) or higher and 139 

have either WSL or Hyper-V configured prior to installation (see 140 

https://docs.docker.com/desktop/install/windows-install/).  141 

After installing Docker Desktop (or Docker Engine for Linux users), one can verify the 142 

installation by running the following command in a terminal1 (Figure 3). If the container starts 143 

and runs successfully, it will display a confirmation message and then exit (Figure 3). 144 

`docker run hello-world` 145 

Figure 3. Command to check Docker installation in Terminal. After running the command 146 
`docker run hello-world` (highlighted at first line), the printout tells us that Docker has 147 
been successfully installed on the system. The schematic interfaces of the Terminal on different 148 
platforms: MacOS (left), Windows (middle), and Ubuntu (right).  149 

 
1 If you are unfamiliar with Terminal and the command line, don’t panic! You can easily launch the Terminal application or the 

command line: MacOS users, search “Terminal” in Launchpad or Spotlight; Windows users, you can search for the terminal 

application “PowerShell”; Linux users, you can use the hotkey of “Ctrl, Alt and T” to start the Terminal. If you want to learn 

more about Termainal, we recommend https://www.freecodecamp.org/news/command-line-for-beginners/. Once the Terminal is 

active (see Figure 3), you can type `docker run hello-world` and then press “ENTER”. For Windows and MacOS users, 

make sure the Docker desktop is running before typing `docker run hello-world`.  

https://docs.docker.com/get-docker/
https://docs.docker.com/desktop/install/windows-install/
https://www.freecodecamp.org/news/command-line-for-beginners/
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2.2. Pull dockerHDDM Image 150 

After ensuring that Docker has been successfully installed and the Docker engine is running 151 

(Figure 3), you can pull the dockerHDDM image by simply running the command in the terminal 152 

(see the meaning of each argument in Figure 4A):  153 

`docker pull hcp4715/hddm` or `docker pull hcp4715/hddm:latest`  154 

This command will pull the latest default version of dockerHDDM, which corresponds to 155 

the image with the tag ̀ 1.0.1`. One can also select different tags for different versions of HDDM 156 

(see https://hub.docker.com/r/hcp4715/hddm/tags). Note that the tutorial in this paper works with 157 

the `latest` or `1.0.1` tags, it is compatible with 0.8.0, with minor grammar changes. 158 

Figure 4. Docker commands to download and run dockerHDDM. (A) Download/pull 159 
dockerHDDM from the Docker hub. The command by default downloads the latest version of 160 
`hcp4715/dockerHDDM` if the image tag is not specified. The CPU architecture (Apple or Intel 161 
chips, corresponding to ARM64 and AMD64 architectures, respectively) is automatically 162 
recognized when the image is downloaded. (B) Command to start a container. Note, “\” separates 163 
different lines of a command in Linux and MacOS Terminal but not in Windows.  164 

https://hub.docker.com/r/hcp4715/hddm/tags
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2.3. Run dockerHDDM Container 165 

After pulling the Docker image to a local machine, you can start a computing environment by 166 

running the dockerHDDM image with the command in the terminal (Figure 4B):  167 

`docker run -v $(pwd):/home/jovyan/work -p 8888:8888  168 

-it --rm hcp4715/hddm jupyter notebook` 169 

This command creates a Docker container, which is a specialized environment 170 

encapsulated within the Docker platform. The `-v` option is used to mount a local folder into the 171 

container’s filesystem, enabling file exchange from the host machine. The example code 172 

`$(pwd):/home/jovyan/work` specifies two paths separated by a colon. The path on the left, 173 

denoted by `$(pwd)`, represents the current working directory on the host machine, and the path 174 

on the right, `/home/jovyan/work`, is the location inside the container where the folder will 175 

be mounted (Figure 4B). ̀ $(pwd)` can be replaced with a valid folder path on your local machine, 176 

such as “D:\docker” on Windows, which is an absolute path to a folder named ‘docker’ on drive 177 

D. The other arguments in the command are explained in Figure 4B.  178 

After running the `docker run …` command, a URL will be displayed at the end of the 179 

terminal output (middle panel in Figure 2). You can copy and paste this URL into any web browser 180 

(such as Firefox or Chrome) to launch a Jupyter interface based on the dockerHDDM container. 181 

You can then open or initialize a Jupyter notebook2 to code, run and view the output directly. It is 182 

worth noting that the `--rm` flag included in the command means that the dockerHDDM 183 

container, along with any data or newly installed Python modules, will be deleted when the 184 

container stops. However, any files or data mounted to the container from the `$(pwd)` path will 185 

remain unaffected. This ensures the reproducibility of the computing environment. If you wish to 186 

modify the computing environment, for example by installing additional Python modules, we 187 

recommend that you first read the Docker API before removing `--rm` directly.  188 

In the Jupyter interface, you will find two files and two folders (middle panel in Figure 2). 189 

The notebook dockerHDDM_workflow.ipynb offers a detailed reproduction of the analyses 190 

 
2 For beginners unfamiliar with Jupyter Notebook, don’t panic! It is just an interface where you can write code and immediately 

check results. You may visit the official website at https://jupyter.org/try-jupyter/retro/notebooks/?path=notebooks/Intro.ipynb to 

try out a web-based platform online. The Jupyter website also provides extensive documentation for users who want to learn 

more about Jupyter Notebook and Python programming (see https://docs.jupyter.org/). 

https://jupyter.org/try-jupyter/retro/notebooks/?path=notebooks/Intro.ipynb
https://docs.jupyter.org/
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presented in this article, which we will discuss further in Section 3. In contrast, the notebook 191 

dockerHDDM_Quick_View.ipynb provides a brief overview of the dockerHDDM image’s new 192 

features and an introduction to basic modeling processes. One folder is “work”, which mounts the 193 

local path into the docker environment. The other folder, “OfficialTutorials” contains notebooks 194 

that reproduce the official tutorials available at  195 

https://hddm.readthedocs.io/en/latest/tutorials.html. Beginners can follow 196 

HDDM_Basic_Tutorial.ipynb to get a basic understanding of HDDM, as discussed in Wiecki et 197 

al. (2013); HDDM_Regression_Stimcoding.ipynb covers more advanced models with regression, 198 

where parameters can vary based on experimental conditions and other covariates; 199 

Posterior_Predictive_Checks.ipynb provide an introduction to posterior predictive checks for 200 

HDDM, showing how to generate predicted data from fitted parameter posteriors and how to 201 

analyze those predicted data; LAN_Tutorial.ipynb provides advanced use of LAN functions that 202 

address the problematic likelihood of more complicated models based on neural network methods 203 

(see Fengler, Govindarajan, Chen, & Frank, 2021).  204 

3. New Features of dockerHDDM 205 

The dockerHDDM_Quick_View.ipynb illustrates two new features in dockerHDDM (compared to 206 

HDDM installed directly without Docker): parallel computing for MCMC chains and creating 207 

InferenceData data for Arivz analyses (as shown in the <Code Block 1>).  208 

<Code Block 1> 209 

```Python 210 
# define a simple model with preloaded data 211 

model = hddm.HDDM(data) 212 

 213 

# origin model fitting code 214 

# model.sample(500, burn = 100) 215 

 216 

# dockerHDDM new model fitting code 217 

model.sample( 218 

 500, burn = 100, 219 

 chains = 4,  # parallel computing for MCMC chains  220 

 return_infdata = True, # return InferenceData for Arivz analysis 221 

 loglike = True, ppc = True, 222 

 save_name = 'example' 223 

) 224 

``` 225 

https://hddm.readthedocs.io/en/latest/tutorials.html
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For all hddm models defined by methods such as `hddm.HDDM()` or 226 

`hddm.HDDMRegressor()`, we can employ the `.sample()` method to run the MCMC 227 

algorithm for model fitting. The original HDDM provided two main parameters to set the MCMC 228 

algorithm, the first parameter was the number of samples (`500`) and the second was the number 229 

of burn-ins (`burn=100`)3.  230 

In dockerHDDM, we included five extra arguments in `.sample()` method to provide 231 

parallel computing for MCMC chains and create InferenceData.  232 

To preserve compatibility and consistent output with origin HDDM, the arguments are 233 

configured with the following defaults: `return_infdata=False`, `loglike=False `, and 234 

`ppc=False `, `save_name=None`, and `chains=1`.  235 

The `chains` argument determines the number of MCMC chains. Using more than two 236 

chains triggers multi-threaded parallel computation, which can significantly reduce time when 237 

multi-chains are need for calculating model diagnosis index �̂� (see Section 4.4). 238 

The `return_infdata` argument converts HDDM results into the InferenceData 239 

structure 4 , accessible via `model.infdata`, by default set to `False` to maintain 240 

compatibility with original HDDM output. Additionally, we have included `loglike` for 241 

computing and saving log-likelihood values (see Section 4.5) and `ppc` for posterior predictive 242 

checks (see Section 4.6). When setting ̀ ppc` as ̀ True`, it defaults to generating 500 predictions 243 

for each observed data, but users can adjust this by add argument `n_ppc`.  244 

Finally, the `save_name` argument specify the path and filename for saving the model 245 

and InferenceData, which is convenient for reusing results.  246 

4. Example of Workflow 247 

In this section (bottom panel of Figure 2), we demonstrate how to use dockerHDDM (i.e., HDDM 248 

and Arviz) to perform key steps of Bayesian modeling (Gelman et al., 2020; Martin et al., 2021): 249 

model specification and fitting, model diagnosis, model comparison, posterior predictive check, 250 

 
3 To run the example notebooks faster, we only use 500 samples here. For a more in-depth understanding of the MCMC settings, 

we recommend reading (van de Schoot et al., 2021; Wiecki et al., 2013). The burn-in samples serve to calibrate the fitting, so the 

final samples need to exclude burn-in samples, yielding a total of 500 –  100 = 400 samples. Generally, a larger number of 

samples improves the estimation accuracy of a model. 

4 InferenceData is a more modern data construct that contains prior, posterior, a posterior predictive samples and observed data, 

facilitating the visualization and analysis of multiple joint datasets (Hoyer & Hamman, 2017). 
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and statistical inference. The code reproduced in this section can be found in 251 

dockerHDDM_Workflow.ipynb in dockerHDDM environment.  252 

4.1. Example data  253 

For convenience, we use the data from Cavanagh et al. (2011), which is built within HDDM, as an 254 

example to demonstrate how to implement the modeling workflow. This dataset contains reaction 255 

time and choice data from 14 Parkinson’s patients (see Table 2). In the experiment, participants 256 

were asked to choose between two options associated with either high or low reward values (i.e., 257 

reward probabilities in typical reinforcement learning tasks). The relative value differences 258 

between the two options define two levels conflict: high conflict for low-low and high-high trials 259 

(“HC” in variable “conf”), and low conflict for low-high trials (“LC” in variable “conf”).  260 

Table 2 Example dataset from Cavanagh et al. (2011).  261 

Subj_idx rt response conf 

0 1.21 1.0 HC 

0 1.63 1.0 LC 

0 1.03 1.0 HC 

0 2.77 1.0 LC 

0 1.14 0.0 HC 

Note: The data structure required for HDDM is long-format data, where each row represents one trial. 262 
“subj_idx is” the subject index; “rt” is the response time (in seconds), and “response” in this case represents 263 

the accuracy, where is correct and 0 is incorrect. These three columns of data are mandatory when using 264 
HDDM and must be kept consistent with the column names, as well as the units (rt, seconds). “conf” is an 265 

optional variable, corresponding to the conflict level, and can be varied according to the experimental design.  266 

Note that, HDDM requires the inclusion of three columns of variables, “subj_idx”, “rt” and 267 

“response”, to construct the hierarchical model. This means that when analyzing your own data, 268 

these three columns of variables must appear in the dataset with identical column names. In 269 

addition, the unit of “rt” must be seconds, and “response” is coded as 1 for the upper boundary of 270 

the corresponding choice and 0 for the lower boundary (see 271 

https://hddm.readthedocs.io/en/latest/howto.html for more details). 272 

https://hddm.readthedocs.io/en/latest/howto.html


Running title: Hitchhiker’s Guide with dockerHDDM 

13 

4.2. Model Specification 273 

As a demonstration of model specification, we will test an example question: is there an effect of 274 

conflict levels on drift rate (see Wiecki et al., 2013). To answer the question, we constructed three 275 

computational models (see Table 3).  276 

Table 3. Models used in this tutorial.  277 

Note: `hddm.HDDM()` is the default function for constructing a hierarchical drift diffusion model. The 278 
`include` argument allows the addition of free parameters, which are fixed by default. The `depends_on` 279 
argument specifies a parameter (e.g., v) that depends on a categorical independent variable (e.g., ‘conf’). The 280 
`hddm.HDDMRegressor()` is a HDDM function that includes effects of conditions in a linear regression 281 
fashion. The `keep_regressor_trace` argument allows a trace of the regressor to be kept, which is needed 282 
for posterior predictive checks. By default, the hierarchical regression allows only the intercept to vary across 283 
participants, while the slope is fixed at the population level. The `group_only_regressors = FALSE` 284 
argument additionally estimates the slopes at the individual level in the regression model. 285 

Model 0 served as the baseline without considering the effect of conflict level on the model 286 

parameters. The model contains the seven parameters, referred to as the full DDM, including the 287 

decision boundary (𝑎), drift rate (𝑣), non-decision time (𝑡), and decision bias (𝑧), as well as 𝑠𝑣, 288 

𝑠𝑡, and 𝑠𝑧 that indicates the trial-by-trial variations of 𝑣, 𝑡, and 𝑧 (Boehm et al., 2018; Ratcliff 289 

& Rouder, 1998; Ratcliff & Tuerlinckx, 2002). By default, HDDM considers the hierarchical 290 

modeling approach that includes parameters at both the individual- and the group-level (see Box 291 

2). Model 0 has 11 population-level parameters, including the mean and the standard deviation for 292 

the four basic parameters (𝑎/𝑣/𝑡/𝑧) and three parameters (𝑠𝑣/𝑠𝑡/𝑠𝑧) for the inter-trial variations. 293 

At the individual level, each subject also has a full set of four basic parameters, yielding a total of 294 

56 = 14 ∗ 4 parameters. Thus, Model 0 has 11 + 56 = 67 free parameters.  295 

Models HDDM functions for defining a model (`df` is the data from Cavanagh et al., 2011) # params 

Model 0 hddm.HDDM(df, include=[‘a’, ‘v’, ‘t’, ‘z’, ‘sv’, ‘sz’, ‘st’]) 67 

Model 1 
hddm.HDDM(df, include=[‘a’, ‘v’, ‘t’,’z’, ‘sv’, ‘st’, ‘sz’],  
depends_on={‘v’: ‘conf’}) 

82 

Model 2 

hddm.HDDMRegressor(df, “v ~ 1 + C(conf, Treatment(‘LC’))”,  
group_only_regressors=False, keep_regressor_trace=True,  
include=[‘a’, ‘v’, ‘t’, ‘z’, ‘sv’, ‘st’, ‘sz’]) 

83 
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 296 

Box 2 Parameters in hierarchical drift-diffusion models 

HDDM employs hierarchical Bayesian modelling by default, where each participant’s free 
parameters are sampled from population-level distributions (Wiecki et al., 2013). Taking full DDM (Model 
0) as an example, non-decision time 𝑡𝑝 is assumed to be drawn from a normal distribution: 𝑡𝑝~𝑁(𝑢𝑡, 𝜎𝑡), 

where 𝑢𝑡 and 𝜎𝑡 are the mean and standard deviation of the population-level normal distribution of non-
decision time t. Similarly, 𝑢𝑧/𝑢𝑎/𝑢𝑣 and 𝜎𝑧/𝜎𝑎/𝜎𝑣 are the means and standard deviations for the other three 
parameters, respectively. In addition, three free parameters 𝑠𝑡/𝑠𝑣/𝑠𝑎 indicate the trial-by-trial variability of 
non-decision time (𝑡), drift rate (𝑣), and initial bias (𝑎), which are estimated only at the population level. 
Consequently, there are a total of 11 population-level parameters.  

At the subject level, each subject has her own estimate of the parameter of a, v, t, z, leading to a total 
of 4 ∗ 𝑝 subject -level parameters. Thus, in the full DDM, the number of parameters is 11 plus 4 ∗ 𝑝. 

 

 
Figure Ⅰ. The hierarchical structure of the full DDM in HDDM. The parameters inside and 

outside the rectangle are subject and population level parameters, respectively. 𝑝/𝑖 are the 
indices of participants (𝑝 = 1, 2, . . . , 𝑃) and trials (𝑖 = 1, 2, … . 𝑁), where 𝑥𝑖,𝑝  is the data 

(choice/reaction time) of the i-th trial in the p-th subject. 

HDDM also allows parameters to vary with variables by integrating hierarchical linear regression 
models (also called linear mixed models or multi-level models). Specifically, the 
`hddm.HDDMRegressor()` function allows any or all of the four parameters of DDM (a, v, t, z) to be 
modelled as a function of experimental conditions or other variables (e.g., EEG signal). In HDDM, the 
regression models are defined using the Python package patsy (see 
https://patsy.readthedocs.io/en/latest/quickstart.html), which uses the same syntax for defining regression 
functions as in other commonly used statistical packages. For example, in Model 2 in the main text, we used 
the expression ̀ v ~ 1 + C(conf, Treatment(‘LC’))`, where the term to the left of “~” is the dependent 
variable and the term to the right of “~” is the regression equation. The term ‘1’ refers to the intercept, which 
corresponds to the variable 𝑣_𝐼𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡 in the output. The term ‘C(conf, Treatment(‘LC’))’ indicates the 
slope coefficient, which corresponds to the variable 𝑣_𝐶(𝑐𝑜𝑛𝑓, 𝑇𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡(‘𝐿𝐶’))[𝑇. 𝐻𝐶] . As in other 
hierarchical regression models, both the intercept and the slope can be estimated at the population level and 
the subject level (referred to as “fixed effects” and “random effects” or “varying effects” respectively, Johnson 
et al., 2017; Pedersen & Frank, 2020; Wiecki et al., 2013), depending on how the model is specified. In 
`hddm.HDDMRegressor()`, the default is hierarchical model with random intercept but no random slope. We 
need to set ` group_only_regressors=False `to include the random slope (as we did int Model 2).  
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Model 1 allows the drift rate to vary as a function of the conflict levels (i.e., 297 

`depends_on={‘v’: ‘conf’}` in HDDM). Specifically, Model 1 sets two drift rate variables 298 

each for low and high conflict levels at the both population- and individual-level, respectively. 299 

Thus, Model 1 has 12 population-level parameters: the mean and standard deviation for 𝑎, 𝑡, and 300 

𝑧; two mean (“v_(LC)” and “v_(HC)”) and one standard deviation for 𝑣; and three inter-trial 301 

variability parameters (𝑠𝑣/𝑠𝑡/𝑠𝑧). Similarly, at the individual level, there are 5 (𝑣𝐿𝐶/𝑣𝐻𝐶/𝑡/𝑧/𝑎) x 302 

14 (subjects) = 70 individual-level parameters. Thus, Model 1 has a total of 82 free parameters. 303 

Note that Model 1 assumes complete independence between high and low conflict levels 304 

within subjects. This assumption may be inappropriate because it is likely that a person who 305 

responded relatively fast in the “LC” condition will also be responded relatively fast in the “HC” 306 

condition and vice versa.  307 

Model 2 was constructed to include correlations between drift rate across conflicting levels. 308 

In Model 2, we use a hierarchical regression model with `hddm.HDDMRegressor()` by using 309 

the formula ̀ v ~ 1 + C(conf, Treatment(‘LC’))` (see Box 2 and Box 4). This formulation 310 

automatically assigns two free parameters, the intercept and slope, to each subject. Thus, there are 311 

5 ∗  14 = 70 individual-level parameters in Model 2. Accordingly, Model 2 has four parameters 312 

for v: “v_Intercept” and “v_Intercept_std” are the mean and standard deviation of the intercept; 313 

“v_C(conf)[T.HC]” and “v_C(conf)[T.HC]_std” are the mean and standard deviation of the slope. 314 

Therefore, Model 2 has 13 population-level parameters: the mean and standard deviation for 𝑎, 𝑡, 315 

and 𝑧; the mean and standard deviation of the slope and the intercept of the regression for 𝑣; and 316 

three inter-trial variability parameters (𝑠𝑣/𝑠𝑡/𝑠𝑧). Taken together, Model 2 has a total of 13 + 70 = 317 

83 free parameters.  318 

4.3. Model Fitting 319 

The defined HDDM model allows the MCMC algorithm to be run using the `.sample()` method 320 

for model fitting and parameter estimation. The definition and fitting of Model 2 are used here as 321 

an example (see <Code Block 2>): 322 

<Code Block 2> 323 

```Python 324 

# define a model by hddm.HDDMRegressor 325 

m2 = hddm.HDDMRegressor( 326 

 df, 'v ~ C(conf, Treatment('LC'))',  327 
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 group_only_regressors = False,  328 

 keep_regressor_trace = True,  329 

 include=['a', 'v', 't', 'z', 'sv', 'st', 'sz']) 330 

# fitting model and return InferenceData 331 

m2_infdata = m2.sample( 332 

 10000, chains = 4, save_name = 'm2',  333 

 loglike = True, ppc = True, return_infdata = True) 334 

``` 335 

To accurately estimate parameters and ensure convergence in hierarchical modeling, we 336 

set up four MCMC chains of 10,000 samples with 5,000 burn-ins (i.e., a total of 20,000 samples 337 

for each parameter). Please refer to Section 3 for the more detailed settings and arguments 338 

description.  339 

With the new functionality introduced by dockerHDDM, we can calculate the log-340 

likelihood of the model and generate posterior predictions after model fitting. Furthermore, the 341 

output of the model fitting can be converted into InferenceData, `m2_infdata`, for subsequent 342 

analyses as described in Section 3. 343 

4.4. Model Diagnosis 344 

In Bayesian inference, it is crucial to ensure the convergence of MCMC chains. With ArivZ, 345 

dockerHDDM supports both visual inspection and quantitative convergence checks (see Section 346 

2.4 in Martin et al., 2021).  347 

`az.plot_trace()` can be used to visualize the posterior distributions of parameters 348 

(i.e., trace plots of the MCMC, Figure 5A).  349 

The Gelman-Rubin statistics (�̂�), and effective sample size (ESS) provide quantitative 350 

measures (see Box 1).  351 

`az.rhat()`computes �̂�, which should be close to 1 for good convergence; values 352 

below 1.01 are typically recommended (Gelman & Rubin, 1992).  353 

`az.ess()` calculates ESS, a measure of the precision of posterior estimates. If the ESS-354 

bulk is over 400, the distribution’s center is well-resolved, and we should ensure high ESS across 355 

all regions of the parameter space (Martin et al., 2021; Vehtari et al., 2021). 356 

The latter two methods are covered by ArviZ’s `az.summary()` (Figure 5B).  357 
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Figure 5. Model diagnosis. (A) Visualization of the traces of all chains using 358 
`az.plot_trace()`, with the argument `var_names` set to focus on the parameter 359 
“V_Intercept” as an example. `compact=False` and `legend=True` ensured that the 360 
individual traces of each chain would be visible. The MCMC chains are valid and reliable when 361 
they fluctuate around a value and different chains are indistinguishable from each other, a 362 
scenario often referred to as a “caterpillar” shape. (B) Output of `az.summary()`, which 363 
includes the mean and standard deviation of the Monte Carlo standard error (MCSE), the effective 364 

sample sizes (bulk-ESS and tail-ESS), and �̂�. Note that the summary data frame has been sorted 365 

by �̂� so that we can easily compare the minimum and maximum values of �̂�.  366 

4.5. Model Comparison 367 

Upon verifying chain convergence, we proceed with model comparison to identify the best-fitting 368 

model. The evaluation metric provided in the original HDDM is deviance information criterion 369 
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(DIC, Spiegelhalter, Best, Carlin, & Linde, 2002). We include two more methods in dockerHDDM: 370 

widely applicable information criterion (WAIC, Watanabe, 2010) and Pareto-smoothed 371 

importance sampling leave-one-out cross-validation (PSIS-LOO-CV, Vehtari, Gelman, & Gabry, 372 

2017). These methods comprehensively integrate posterior samples for model comparison and 373 

evaluation (see Box 3). 374 

For the demonstration, we compared three models across all three evaluation metrics 375 

(lower value is better)5. As shown in Table 4, Model 2 exhibits the lowest values on all three 376 

 
5 DIC can be extracted directly from the model rather than InferenceData, e.g. `m0.dic`.  

Box 3. Linking DIC, WAIC, and PSIS-LOO-CV to AIC 

The Deviance Information Criterion (DIC), Widely Applicable Information Criterion (WAIC), and 
Pareto-Smoothed Importance Sampling Leave-One-Out Cross-Validation (PSIS-LOO-CV) are criteria 
founded on the concept of out-of-sample predictive accuracy, i.e., the accuracy of using the fitted model to 
predict new data generated by the assumed data-generating process. Predictive accuracy is often encapsulated 
by the log predictive density (Box 1). However, the log predictive density approximated using the observed 
data and the posterior estimates of parameters is a biased, an adjustment is required to correct the bias. Thus, 
the key difference between DIC, WAIC and PSIS-LOO-CV lies in the difference between the two terms of 
log predicted density and corrected bias (see the table below). 

DIC uses the Bayesian posterior means for estimating log predictive density and includes an 
adjustment based on the effective number of parameters (𝑃𝐷𝐼𝐶). It is particularly suited for hierarchical models, 
offering an improved estimate of predictive density (Spiegelhalter, Best, Carlin, & Van Der Linde, 2002). 

WAIC further refines DIC, evaluating the log predictive density across the entire posterior and 
correcting bias via the variability of log predictive density (�̂�𝑊𝐴𝐼𝐶). This adjustment is crucial for measuring 
model robustness and guarding against overfitting (Watanabe, 2010). 

PSIS-LOO-CV estimates the predictive density by simulating the leave-one-out cross-validation, 
which by definition is the out-of-sample predictive accuracy, so bias correction is no longer needed for PSIS-
LOO-CV. Please see Gelman, Hwang, & Vehtari (2014) and Vehtari, Gelman, & Gabry (2017) for more 
details on these three indices.  
 

 Predictive accuracy Adjustment Formula 

AIC 𝑙𝑜𝑔 𝑝(𝑦 | 𝜃𝑚𝑙𝑒) k −2 (𝑙𝑜𝑔 𝑝(𝑦| 𝜃𝑚𝑙𝑒)  − 𝑘) 

DIC 𝑙𝑜𝑔 𝑝(𝑦 | 𝜃𝐵𝑎𝑦𝑒𝑠
̂ ) 𝑃𝐷𝐼𝐶 −2 (𝑙𝑜𝑔 𝑝(𝑦| 𝜃𝐵𝑎𝑦𝑒𝑠

̂ ) − 𝑃𝐷𝐼𝐶) 

WAIC 𝑙𝑝�̂� �̂�𝑊𝐴𝐼𝐶 −2 (𝑙𝑝�̂�  − �̂�𝑊𝐴𝐼𝐶) 

PSIS-LOO-CV 𝑒𝑙𝑝�̂�𝑝𝑠𝑖𝑠−𝑙𝑜𝑜 N.A. −2 𝑒𝑙𝑝𝑑𝑝𝑠𝑖𝑠−𝑙𝑜𝑜 

Note: 𝑙𝑝�̂�, computed log pointwise predictive density, see Glossary for details; 𝑒𝑙𝑝�̂�𝑝𝑠𝑖𝑠−𝑙𝑜𝑜 expected log 

pointwise predictive density for a new dataset based on PSIS-LOO method. k represents the count of model 

parameters. 𝑃𝐷𝐼𝐶 is the DIC’s adjustment for the effective number of parameters (Spiegelhalter, Best, 

Carlin, & Van Der Linde, 2002). �̂�𝑊𝐴𝐼𝐶 is the WAIC’s approach to adjusting the effective number of 

parameters (Watanabe, 2010).  
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metrics, indicating it is the best model. The results of model comparison revealed that Models 1 377 

and 2 are much better than the baseline Model 0, suggesting that experimental conflict conditions 378 

have a substantial effect on drift rates. Moreover, Models 2 is slightly better than Model 1, 379 

suggesting that regression model may suit the data better. Nevertheless, the similarities between 380 

Model 1 and Model 2 suggests that both models fit the data adequately in this case.  381 

Table 4. Model comparison with different criteria.  382 

* Rank is from the best model to the worst. Models 0 to 2 are referred to as m0 to m2.  383 

Note that WAIC and PSIS-LOO-CV require the pointwise log-likelihood of each data point 384 

given a posterior sample of parameters, which must be computed using the likelihood function and 385 

posterior trace (see Box 3). This variable is not directly provided in the HDDM object and must 386 

be customized to be computed via the likelihood function and the posterior trace.  387 

In dockerHDDM, the pointwise log-likelihood can be computed at sampling and fitting 388 

stage, via `m.sample(... , retutn_infdata = True, loglike = True)` (see <Code 389 

Block 2>), or after the model has been sampled and fitted, by `m.to_infdata(loglike = 390 

True)`. Both ways return InferenceData, allowing users to immediately compute WAIC and 391 

PSIS-LOO-CV. After that, the evaluation metrics for each model’s InferenceData are available 392 

using ArviZ’s `compare` method (see <Code Block 3>), which returns the results of WAIC for 393 

the argument `ic=“waic”` or PSIS-LOO-CV for `ic=“loo”`.  394 

<Code Block 3> 395 

```Python 396 

compare_dict = { 397 

 'm0': m0_infdata,  398 

 'm1': m1_infdata, 399 

 'm2': m2_infdata 400 

} 401 

az.compare(compare_dict, ic = 'loo') 402 

``` 403 

Rank* DIC PSIS-LOO-CV WAIC 

1 m2 (10654.89) m2 (10646.25) m2 (10646.20) 

2 m1 (10655.24) m1 (10647.21) m1 (10647.15) 

3 m0 (10835.24) m0 (10824.93) m0 (10824.89) 
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Finally, it’s important to note that the model comparison metrics only allow us a relative 404 

ranking of alternatives. To assess the absolute goodness-of-fit of the model, we recommend 405 

performing the posterior predictive check (PPC), as discussed in the next section, alongside the 406 

diagnostic information provided by LOO and WAIC (see Martin et al., 2021). 407 

Figure 6. Posterior predictive check plot `az.plot_ppc()` for Model 0 “m0” and Model 2 408 
“m2”. Solid black lines are the density plot of the observed RT data; blue lines are the posterior 409 
predictive samples, each line represents the predicted RT distribution based on one posterior 410 
predictive sample; yellow dashed lines represent the mean of all predicted RT distributions across 411 
all posterior predictive samples. (A) shows the results of the comparison between the two models 412 
(m0 vs. m2) at the individual level (subjects 3 and 11 as an example); (B) shows the results of 413 
the comparison at the condition level (i.e., “LC” represents lower conflict and “HC” represents 414 
higher conflict). All plots in the left column are for m0 and all plots in the right column are for 415 
m2. Note that the argument `coords` specifies the PPC level (individual or group level) that 416 
should be preprocessed before plotting. `num_pp_samples` is used to set the number of 417 
predictive data required for plotting. 418 
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4.6. Posterior Predictive Check  419 

In addition to model comparison, which assesses relative performance, the posterior predictive 420 

check (PPC) evaluates how well synthetic data generated from posterior samples of parameters 421 

align with the actual data. PPC is crucial because model comparison only evaluates the “least worst” 422 

model, not necessarily selects the one that can account for the data very well (see Pedersen, Frank, 423 

& Biele, 2017; Steingroever, Wetzels, & Wagenmakers, 2014).  424 

ArviZ offers convenient visualization tools for inspecting PPC (see section 2.3 in Martin 425 

et al., 2021). The function `az.plot_ppc()` is helpful to visualize PPC at the individual or 426 

condition level (Figure 6). In the demonstration, the synthetic data from Model 2 match more 427 

closely the actual data compared to the baseline Model 0, and this difference becomes apparent 428 

when examining PPC at the individual- (Figure 6A) and condition-level (Figure 6B).  429 

4.7. Statistical Inference  430 

A final step in Bayesian modeling is to draw statistical inferences from the posterior parameter 431 

distributions in the best-fitting model. In our example, we will test the hypothesis whether drift 432 

rates significantly differ between high and low conflict conditions based on Model2 (“m2” in the 433 

Notebook). This hypothesis will be tested using the posterior samples of the regression coefficient 434 

in “m2”, which has a variable name “v_C(conf, Treatment(‘LC’))[T.HC]”.  435 

Note that there are several acceptable methods for Bayesian hypothesis testing, such as 436 

probability of direction, Bayes factor, and Maximum a posteriori (MAP) based p-value (Makowski 437 

et al., 2019). Here we adopted the approach combining Highest Density Interval (HDI) and the 438 

Region of Practical Equivalence (ROPE, Kruschke, 2018) (see Box 1).  439 

We define a ROPE of [-0.2, 0.2] to represent values practically equivalent to zero6 and use 440 

`plot_posterior()` function from ArviZ to implement ROPE test. By comparing the 95% 441 

HDI of the regression coefficient to this ROPE, we find that the HDI falls completely outside the 442 

 
6 The ROPE should be tailored to the specific paradigm and research question (Dienes, 2021) and reflect the range of possible 

values for each parameter (e.g., Tran et al., 2021). For example, a recent systematic parameter review of DDM found that the 

absolute value of a drift rate ranged from 0.01 to 18.51, with a median of 2.25 (Tran et al., 2021); another simulation and meta-

analysis of conflict tasks showed that a drift rate between 0.05 and 0.35 captured the conflict effect (Hedge et al., 2018). 

Accordingly, we choose ROPE [-0.2 0.2] for illustrative purposes, implying that effects on drift rates smaller than 0.2 are not of 

interest.  
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ROPE (Figure 7A), suggesting that the drift rate is higher in the low conflict condition than the 443 

high conflict condition (Figure 7B).  444 

Therefore, considering the results from various aspects (model comparison, ppc, and 445 

posterior inference), we conclude that the model which takes into account the influence of conflict 446 

level on drift rate performs the best. Moreover, high conflict affects the cognitive process of 447 

decision-making by impeding the speed of evidence accumulation.  448 

Figure 7. (A) Statistical inference of parameters. The high-density interval (HDI, black line and 449 
texts) is compared with the region of practical equivalence (ROPE, red line and text). 450 
`var_names` argument can be used to select both group-level and individual-level parameters 451 
for analysis. `hdi_prob ` argument specifies the probability of the HDI, typically set at 0.95 452 
to correspond to a 95% confidence interval. `rope` defines the limitations of ROPE, which is a 453 
range considered to be equivalent to the null hypothesis or a reference value for the parameter. 454 
The results show no overlap between the 95% HDI and the ROPE, indicating that the parameter 455 
is credibly different from zero. (B) Violin plot of parameter posteriors at two conflict levels. The 456 
black line is the 95% HDI and the white dot is the mean. The drift rate is lower in high conflict 457 
(HC) than in low conflict (LC) conditions.  458 
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 459 

Summary 460 

In this article, we introduce dockerHDDM, a user-friendly, out-of-the-box, and one-stop Docker 461 

image for implementing HDDM analysis within a modern Bayesian hierarchical workflow. Our 462 

dockerHDDM has three major advantageous: (1) it leverages Docker to solve compatibility issues 463 

and simplify the installation process; (2) it ensures broad support across different machines 464 

equipped with either Intel or Apple chips; and (3) it integrates state-of-the-art Bayesian modeling 465 

practices with ArviZ, facilitating a more principled Bayesian workflow. We also provide a step-466 

by-step tutorial on how to implement HDDM using dockerHDDM. As HDDM continues to 467 

advance, with recent developments including reinforcement learning DDM (Pedersen & Frank, 468 

2020; Pedersen, Frank, & Biele, 2017) and likelihood approximation networks (LANs, Fengler et 469 

al., 2022, 2021), dockerHDDM will serve as a critical tutorial for computational reproducibility 470 

for published studies. Given the extensive knowledge required for principled computational 471 

modelling, we recommend readers go through materials in Box 4 for a deeper understanding of 472 

the DDM family, cognitive modeling, hierarchical models, and Bayesian modeling. We expect 473 

Box 4. Recommendation for Further Reading 

A full understanding of how Bayesian hierarchical drift-diffusion modeling works requires not only basic 
knowledge of DDM, but also knowledge of Python programming, Bayesian statistics, and hierarchical regression 
models. This background knowledge is generally not part of the coursework in psychology or neuroscience 
education, although the situation is changing in recent years (e.g., Hart et al., 2022). We recommend the following 
resources to quickly catch up and avoid misuse or abuse of HDDM.  
 

Background knowledge/skills Resource 

Bayesian statistics 
Etz & Vandekerckhove, 2018; Kruschke & Liddell, 2018; Lambert, 
2018; Martin, Kumar, & Lao, 2021; van de Schoot et al., 2021. 

(Bayesian) Hierarchical (regression) 
models 

https://twiecki.io/blog/2014/03/17/bayesian-glms-3/; 
https://github.com/lei-zhang/BayesCog_Wien 
Capretto et al., 2020 

Computational modeling 
Blohm, Kording, & Schrater, 2020; Wilson & Collins, 2019; Zhang, 
Lengersdorff, Mikus, Gläscher, & Lamm, 2020. 

Drift Diffusion Models Ratcliff & McKoon, 2008; Voss, Nagler, & Lerche, 2013. 

Sequential sampling models beyond 
DDMs 

Fengler, Bera, Pedersen, & Frank, 2022; Ratcliff et al., 2016. 

 

https://twiecki.io/blog/2014/03/17/bayesian-glms-3/
https://github.com/lei-zhang/BayesCog_Wien
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that dockerHDDM and this detailed tutorial will reduce the technical burden and promote the 474 

computational reproducibility of drift-diffusion modeling for users of all levels of computational 475 

expertise.  476 

 477 

Code Availability 478 

The software, data, and scripts (Jupyter notebooks) used to generate the models and results 479 

described in this article are available at https://hub.docker.com/r/hcp4715/hddm. Readers can pull 480 

the entire image from Docker hub after successfully installing Docker desktop (for MacOS and 481 

Windows) or Docker engine (for Linux) and using the following code in a terminal (Linux or 482 

MacOS) or Windows (power) shell:  483 

`docker pull hcp4715/hddm` 484 

Alternatively, readers can find our online notebook here: 485 

https://github.com/hcp4715/dockerHDDM/. Readers can also find the code that created our 486 

dockerHDDM images at https://github.com/hcp4715/dockerHDDM/dockerfiles/. Any questions 487 

about this tutorial or related dockerHDDM images can be posted and discussed here: 488 

https://github.com/hcp4715/dockerHDDM/issues. 489 
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