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ABSTRACT
Traditional decision-making models conceptualize humans as optimal learners aiming to maximize
outcomes by leveraging reward prediction errors (PE). While violated emotional expectations
(emotional PEs) have recently been formalized, the underlying neurofunctional basis and whether it
differs from reward PEs remain unclear. Using a modified fMRI Ultimatum Game on n=43 participants
we modelled reward and emotional PEs in response to unfair offers and subsequent punishment
decisions. Computational modelling revealed distinct contributions of reward and emotional PEs to
punishment decisions, with reward PE exerting a stronger impact. This process was neurofunctionally
dissociable such that (1) reward engaged the dorsomedial prefrontal cortex while emotional
experience recruited the anterior insula, (2) multivariate decoding accurately separated reward and
emotional PEs. Predictive neural expressions of reward but not emotional PEs in fronto-insular systems
predicted neurofunctional and behavioral punishment decisions. Overall, these findings suggest
distinct neurocomputational processes underlie reward and emotional PEs which uniquely impact
social decisions.

Key words
Reward; Emotion; Prediction error; Frontal cortex; Insula; Social decision

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 30, 2024. ; https://doi.org/10.1101/2024.04.29.591585doi: bioRxiv preprint 

https://doi.org/10.1101/2024.04.29.591585
http://creativecommons.org/licenses/by-nc-nd/4.0/


INTRODUCTION

Scaling the discrepancy between actual and anticipated reward or punishment, generally referred to as
prediction errors (PEs), critically guides social adaptive behavior which is essential for survival and
personal development 1. Traditional learning and value-based decision-making models commonly posit
that individuals acting as optimal learners strive to maximize their rewards while minimizing costs rely
on reward PEs 2,3. This perspective is supported by convergent evidence from animal models that
highlight the crucial role of dopamine reward PE signaling in driving approach learning towards
rewarding stimuli 4,5. However, in humans the emotional reaction towards gains and losses may
additionally impact decision making processes 6. Indeed, a positive PE (i.e., obtaining a better outcome
than expected) reflects a pleasant surprise, elicits hedonic experiences and motivates the future
pursuit of rewards, whereas a negative PE (i.e., obtaining a worse outcome than expected) evokes
negative emotions such as disappointment and frustration, ultimately leading to avoidance 4. When
making decisions, people engage in anticipation of the hedonic valence (pleasure or pain) associated
with future outcomes. The accuracy of those prediction holds paramount importance, as an
overestimation of pleasure pertaining to favorable outcomes can lead to risky choices, while an
overestimation of the aversive experience for unfavorable outcomes may lead to avoidance and in turn
missed opportunities 11. In an experimental context the corresponding decision process has been
extensively examined using the classic social context-dependent Ultimatum Game (UG). In this
economic exchange paradigm one player proposes a division of a sum of money and the other player
(responder) can either accept or reject the offer (in which case neither the proposer nor responder
receives any money). From an economic perspective the rational decision would be to accept even
small offers to maximize reward, yet humans frequently reject offers that they consider unfair. The
underlying decision making process has commonly been explained in terms of a negative reward PE
signaling receiving the (lower) actual offer than expected and the behavior may serve to “punish”
individuals who violate social fairness norms 7. However, humans do not solely build their models
about the environment on reward computations and accumulating evidence indicates that humans
establish complex mental models to accurately predict their own and others’ emotional experience 8,
such that e.g. the anticipation of regret strongly impacts decision making 9,10.

While numerous studies have employed computational models to determine the behavioral and
neural dynamics of classic reward PEs during social learning, initial studies indicate that anticipated
emotions affect decisions. Within a reinforcement learning (RL) framework, the Rescorla-Wagner RL
model appears suitable to explain social learning mechanisms 11,12. For instance, the learning rate at
which people recalibrate their social expectations quantifies the extent to which PEs are integrated
into the updating of reward values 13. In real-world social interactions, however, the basic RL model
does not take into consideration the complex social contexts or associated emotional reactions.
Sophisticated studies have begun to explore the impact of emotional experiences on RL-based learning
in social contexts, demonstrating that empathy influences the prosocial learning rate 14,15 and acquiring
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knowledge about others’ emotions facilitates inferences regarding the informational value of social
cues 16. A recent study by Heffner and colleagues utilized a modified version of the UG that required
participants to report their anticipated and actual emotional state for (rather unfair) monetary offers
and could demonstrate that emotional, rather than reward PEs are critical determinants for punishing
unfair offers in an UG17. While these initial studies suggest a critical role of reward and emotional
evaluations in social decisions, it remains unclear how the emotional and reward PEs are generated in
the brain and uniquely shape decisions.

Although considerable evidence has outlined that a common ‘neural currency’ underlies
evaluation of rewards 18,19, whether reward and emotional PEs are mediated by common or
distinguishable neurofunctional computations has not been investigated. The striatum has been
consistently reconciled as a center encoding reward PE during non-social learning, however in the
context of social reward learning entailing additional social and emotional processes a broader brain
network is recruited. When socially learning about other’s actions and outcomes, RL-like PEs with
respect to expectations formed about how others viewed the self is revealed in the activity of anterior
insula (aINS), anterior cingulate cortex (ACC) and orbitofrontal cortex (OFC)20. Additionally, the aINS
has been proposed to mediate approach and avoidance in response to social affective stimuli 21,22, and
critically contributes to avoidance of aversive emotional states 23. In social economic games such as UG
where norm violations and aversive emotional states are intertwined, activation of the aINS has been
associated with individuals’ willingness to reject unfair offers 24, possibly reflecting the involvement of
the aINS in encoding both aversive and positive reward PEs 25. Moreover, numerous studies have
explored the computational function of the ACC for encoding expectations and PEs related to others’
decisions during social RL learning 26, with prosocial PE signals in this region during learning to
maximize monetary reward for others being correlated with the levels of empathy27. Encoding of social
reward-related PEs by ACC neurons may further reflect the relevance of other individuals to one’s own
emotional states, thereby eliciting changes in emotional arousal 28. Finally, the OFC is typically
restricted to social context in a self-referenced framework such as encoding more the self-referenced
type of reward PEs29. However, whether and how these systems process information about emotion
and reward PEs as well as their distinct contributions to these two computational decision features
remain to be explored.

Against this background we conducted a functional magnetic resonance imaging (fMRI)
experiment (Fig. 1a) with a modified UG paradigm in N=43 healthy participants to examine the
cognitive and neural mechanistic evidence of reward and emotional PEs underlying social value-based
decision-making. In the modified UG paradigm, participants were required to predict how much
reward they would get from the proposer and then predict how they feel on two emotional
dimensions (valence and arousal) while again reporting their emotional experience when receiving the
actual offer and finally deciding whether to accept or reject the proposer’s offer (Fig. 1b). When the
offers are accepted, the monetary allocation will be made according to the offer, whereas when offers
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are rejected, neither the proposer nor responder receives any money (therefore often referred to as
punishment decisions)17. On the behavioral level logistic mixed-effects regression models were
employed to determine the predictive capacity of emotional and reward PEs to punishment decisions
(Fig. 1c). On the neural level, we aimed to investigate: 1) the common and distinct neural systems that
support the prediction and experience of reward and emotion during social decisions, 2) whether
distinct multivariate neural patterns are sensitive to capture variations of emotional and reward PEs
and the associated punishment decision using machine-learning based neural decoding approaches
(given the higher precision of this approach to establish process specific neural signatures30,31), 3)
whether the reward or emotional neurofunctional PE representation predict the neurofunctional
decision to reject an offer and thus to characterize the different roles the PEs play in punishment
decisions (Fig. 1c).

Fig. 1 Experimental protocol, task design, and main goals and corresponding analytic workflow.
(a) Experimental timeline. The questionnaire A and B include positive and negative affect scale, and state-trait anxiety
inventory. (b) The modified Ultimatum Game task and PEs computation. Before each offer individuals predicted how much
money they anticipated to receive from the proposers, and how they would feel in terms of valence and arousal when
receiving the anticipated offer. After receiving the actual offers, individuals reported their current actual emotional
experience in terms of arousal and valence and finally decided either to accept or to reject the offer. Main behavioral
outcome where the computed reward and emotional PEs in terms of establishing trial-by-trial PEs: a reward PE (color coded
in blue), an arousal PE (color coded in red) and a valence PE (color coded in yellow) scaling the difference between subjects’
prediction about the reward or emotion and their actual experience. (c)Major goals and analytic workflow of the current
study. On the behavioral level, the predictive contribution of the reward and emotional PE to the decision to punish the
proposer (i.e. rejecting the offers) was determined, modelling of the simultaneously acquired fMRI data aimed at: i)
determining the univariate activation profiles of reward and emotional experience during the prediction and experience
period to find separable neural underpinnings of reward and emotional, ii) training distinct multivariate neural patterns of
emotional and reward PEs, as well as of punishment decisions to further indicate which neural pattern of PEs is specific to
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that of punishment decisions, iii) finally examining the links between the multivariate neural patterns for punishment
decisions and all PEs to elucidate the neural pathway underlying the effects of reward and emotional PEs in social choices.

Results

Potential confounders

Both female and male participants were comparable with respect to the sociodemographic and pre-
fMRI mood indices arguing against possible sex bias on the following results (all ps > 0.06, Table 1).

Table 1. Demographics and mood confounders

Female (n = 23) Male (n = 20) T, p
Age 21.57 ± 2.15 20.90 ± 2.07 1.03,0.31

Body Mass Index,
kg/m2

20.37 ± 2.31 21.56 ± 1.84 -1.85,0.07

PANAS-N 16.70 ± 5.27 15.30 ± 3.92 0.97,0.34

PANAS-P 27.87 ± 5.96 29.75 ± 4.32 -1.17,0.25

TAI 40.61 ± 9.03 37.25 ± 7.71 1.30,0.20

SAI 42.48 ± 9.43 39.55 ± 6.17 1.18,0.24

Values are presented as mean ± 1*standard deviation. PANAS: Positive and negative affect scale, STAI-State and Trait
anxiety inventory.

Prediction of reward and emotional PEs to punishment decisions

In the realm of social interactions, complex social behaviors, such as the formation of alliances with
peers, are theorized to be driven by the violation of expected outcomes including reward and emotions.
We therefore tested the predictive role of reward and emotional PEs to the decisions about punishing
a norm-violating proposer (i.e., rejecting the offers) via using a logistic mixed-effects regression model.
Our results revealed that reward and emotional PEs significantly predicted punishment decision, such
that participants showed higher punishment rates when experiencing less reward (β = -3.93 ± 0.46
(standard error), Z = -8.51, p < 0.001) and lower valence (β = -1.54 ± 0.29, Z = -5.27, p < 0.001) but
higher arousal (β = 0.93 ± 0.20, Z = 4.71, p < 0.001) than anticipated (Fig. 2a). Moreover, we also
employed β coefficient tests to compare the predictive power of reward and emotional PEs and found
that the reward PE had a significantly stronger impact on motivating punishment choices than
emotional PEs (reward PE vs valence PE, Z = -4.37, p < 0.001, reward PE vs arousal PE, Z = -8.89, p <
0.001). To explore the possible impact of sex on the observed findings the regression models were
recomputed separately in male and female individuals. The results showed that all PEs robustly
predicted punishment decisions (Female: reward PE, β = -4.03 ± 0.59, Z = -6.84, p < 0.001, valence PE,
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β = -1.71 ± 0.43, Z = -4.02, p < 0.001, arousal PE, β = 1.41 ± 0.38, Z = 3.68, p < 0.001; Male, reward PE, β
= -3.93 ± 0.74, Z = -5.31, p < 0.001, valence PE, β = -1.47 ± 0.39, Z = -3.79, p < 0.001, arousal PE, β = 0.70
± 0.18, Z = 3.83, p < 0.001; Fig. 2a) while the reward PE had a higher predictive capacity than emotional
PEs (Female, reward PE vs valence PE, Z = -3.19, p < 0.001, reward PE vs arousal PE, Z = -7.48, p < 0.001;
Male, reward PE vs valence PE, Z = -2.94, p < 0.01, reward PE vs arousal PE, Z = -5.54, p < 0.001). This
result was consistent with the subsequent finding that female and male subjects exhibited a
comparable reliance on all PEs to make punishment choices (reward PE × gender, β = 0.40 ± 0.79, Z =
0.50; valence PE × gender, β = 0.23 ± 0.53, Z = 0.43; arousal PE × gender, β = -0.44 ± 0.39, Z = -1.14; all
ps > 0.25, Fig. 2b).

Fig. 2 Predictive role of the different prediction errors for the decision to punish a social norm-violating proposer (reject an
offer). (a) All PEs showed a significant predictive effects on punishment decisions such that participants showed higher
punishment rates when they experienced less reward or lower valence but higher arousal than anticipated. (b) There was
no significant gender difference on the reliance of all PEs to make punishment decisions. The lines reflect the probability of
different choice pairs including rejecting versus accepting in the Ultimatum Game task, and the negative values represent
negative PEs, suggesting less reward, less pleasantness, as well as less arousal than expected.
Shaded areas reflect ± 1*standard errors. ***p < 0.001

Neural activation for reward and emotion during prediction and experience stages

To further determine whether the anticipation and outcome evaluation on the reward and emotional
level are supported by different brain systems we examined brain activation difference for reward and
emotions separately for the prediction and experience stages of the experiment. While we did not
observe that different regions were involved during predicting rewards and emotions, results
suggested that the left dorsomedial prefrontal cortex (dmPFC, peak MNI coordinates, x/y/z = 10/48/46,
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F = 24.89, PFWE-peak < 0.001, k = 566; Fig. 3) and bilateral aINS (left aINS, peak MNI coordinates, x/y/z = -
46/-2/4, F = 29.50, PFWE-peak < 0.001, k = 267; right aINS, peak MNI coordinates, x/y/z = 52/6/10, F =
43.97, PFWE-peakr < 0.001, k = 653; Fig. 3) were engaged differently during the reward and emotional
evaluation stage. Examination of extracted parameter estimates (spherical masks, radius: 8 mm)
revealed that the right dmPFC was activated stronger during experienced reward compared to
emotions (Fig. 3), while the bilateral aINS was stronger engaged during valence and arousal experience
as compared to reward experience (Fig. 3). Overall, these results indicate that the dmPFC encodes the
experience of reward while the aINS encodes the actual emotional experiences in response to (unfair)
offers.

Fig. 3 Brain regions processing the experience of reward and emotion, respectively. (a) The left dmPFC showed stronger
engagement during reward relative to emotional experiences, while emotion processing regions such as the bilateral aINS
showed higher activation for experienced emotions rather than the rewards (b). For illustration purpose, parameter
estimates were extracted from spherical (radius: 8 mm) regions of interest in the identified dosomedial prefrontal cortex
(dmPFC) and anterior insula (aINS) regions.
***p < 0.001

Neural signatures of reward and emotional PE

Given the high sensitivity of multivariate pattern analysis32,33 with respect to segregating cognitive and
emotional processes we further developed a multivariate pattern classifier for reward and emotional
PEs separated for punishment and accept decisions. Consistent with previous work, the decoding
analysis revealed that multivariate predictive expression in the ventromedial prefrontal cortex,
dorsolateral prefrontal cortex and dmPFC predicted the reward PE under accept decision (Table S1),
while the multivariate expression in the right posterior insula (pINS), right ventrolateral prefrontal
cortex (vlPFC), and left ACC was able to classify reward PE during punishment decision (accuracy, 0.72,
sensitivity and specificity, 0.60, 0.84, separately, p < 0.001, Fig. 4a). Classification accuracy for
emotional PEs that separated by punishment and accept decisions remained at chance level (all ps >
0.05).
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To segregate the neural differences between reward and emotional PEs a pattern similarity
analysis based on multivariate neural patterns of all PEs and a group-level correlation analysis between
activations of contrast images for PEs were employed. We found no significant correlation between the
whole brain multivariate expression weights for reward and emotional PEs (95% confidence intervals
(CI) obtained from bootstrap tests (500 samples) all included zero) or contrast images for reward and
emotional PEs for the specific decisions (all ps > 0.05, Fig. 4b). Together the findings indicate a
sensitive neural pattern for reward PE in the frontal-insular circuit which was distinct from emotional
PEs.

With the purpose of determining the (dis-)similarity between the reward and emotional PE
representations, we fitted linear support vector regression (SVR) models to establish separate
multivariate predictive signatures of reward and emotional PEs, and further examined their distinction.
When using individual beta maps (one per PE level for each subject) as features to predict participants
true PE value, we found overall correlations between predicted and actual reward and emotional PE
values reached significance (0.31 < r < 0.48, all ps < 0.001) and the within-subjects prediction-outcome
(i.e., 43×5=215 pairs) correlation coefficient was above 0.57 (Fig. S2). Moreover, classification
accuracies for high versus low reward or emotional PE responses were higher than chance level in
binomial tests (all ACC > 0.90, p < 0.001, Fig. S2). These findings demonstrate that during experiencing
the actual rewards or emotions higher neural signature responses of the PEs were associated with
stronger violations of the expected rewards or emotions, respectively. Consistent with previous
classification results, the predictive neural signatures of reward and emotional PEs also showed spatial
dissimilarity (reward & valence PEs, 95% CI, [-0.47, 0.43]; reward & arousal PEs, 95% CI, [-0.22, 0.22];
arousal & valence PEs, 95% CI, [-0.16, 0.14]).

Fig. 4Multivariate neural expressions of reward and emotion prediction errors and their distinction.
(a)Whole brain multivoxel pattern for differentiating punishment and accept reward PE with a bootstrapped samples (5000)
which include the right pINS, right vlPFC and left ACC. The violin plot indicates that reward PE signature under punishment
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decision showed a higher response than that under accept decisions, t(42) = 2.16, p = 0.04, two tailed, paired t-test, red line:
high response in the reward PE under punishment decisions, blue line: high responses in the reward PE under accept
decisions, and the forced-choice classification accuracy was 0.72, p < 0.001, two tailed, binomial test. (b) Bootstrapping test
results for SVM classifier weight correlations. The short red lines reflect 95% confidence intervals obtained from bootstrap
tests (500 samples). No regions showed significant correlations between SVM classifier weights. (c) The group-level
correlations between activation of contrast images for punishment and accept-decision separating reward or emotional PEs.
No regions showed significant average correlations between activations of contrast values across participants.
ACC-accuracy, AUC-area under curve, Spec-specificity, Sens-sensitivity, *p < 0.05

Univariate activation and multivariate expression pattern for Punishment versus Accept decisions

In line with previous studies systematically mapping neural activation related to social decisions24,34,
we examined univariate activation for the differences between punishment and accept decisions and
observed a fronto-insular network encompassing clusters located in the left dmPFC (peak MNI
coordinates, x/y/z = -10/56/16, T = 6.13, PFWE-cluster < 0.05, k = 996), bilateral ACC (peak MNI coordinates,
left ACC: x/y/z = -10/48/14, T = 4.71, PFWE-cluster < 0.05, k = 143, right ACC: x/y/z = 6/48/14, T = 4.05,
PFWE-cluster < 0.05, k = 76) and left aINS (peak MNI coordinates, x/y/z = -42/20/-10, T = 6.53, PFWE-cluster <
0.05, k = 549, Fig. 5a) showing increased activation for punishment decisions. Further analyses using
machine-learning based whole brain multivariate analyses35 via SVM classifier across individuals
discriminated accept and reject decisions with high accuracy (0.78), high specificity (0.81) and high
sensitivity (0.74). This neural pattern encompassed robust contributions of the left dmPFC, left aINS
and left inferior frontal gyrus (bootstrapped 10,000 samples, FDR corrected, p < 0.05, Fig. 5b). In
addition, given that reward and emotional PEs can directly predict the decisions to reject or accept the
offers, we further explored whether the multivariate expression for punishment or accept decisions
would be related to the PEs decoder pattern utilizing correlation analyses between the group-average
reward or emotional PEs signatures responses separated by the decisions and the group-average
decisions response. Results demonstrated – to a certain extent – the specificity of the reward PE
pattern to predict the punishment decision expression (r = 0.29, p < 0.01, for emotional PEs all ps >
0.05).
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Fig. 5 Univariate and multivariate patterns of punishment versus accept decisions.
(a) Univariate activation for the difference between punishment and accept decisions showed that the bilateral ACC, left
dmPFC and aINS were activated strongly for punishment choices (reject the offer). (b)Multivariate neural expression
classifying the punishment and accept decisions included regions such as the left dmPFC, aINS and inferior frontal gyrus.
The violin plot indicates that punishment decisions showed a higher level response compared to accept decisions, t(42) =
10.85, p < 0.001, two tailed, paired t-test, red line: high response in the punishment decisions, blue line: high responses in
the accept decisions, and the forced-choice classification accuracy was 0.78, p < 0.001, two tailed, binomial test.
ACC-accuracy, AUC-area under curve, Spec-specificity, Sens-sensitivity, ***p < 0.001

Pattern expressions within the reward PE decoder predict punishment decisions

Finally, to establish the functional association between neural signatures and behavior, we applied
correlation analyses to investigate whether the neurofunctional PE signatures could predict
punishment decisions on the behavioral level. We observed that pattern expressions for the reward PE
under the punishment condition (r = 0.42, p < 0.01, Fig. 6a), but not for emotional PE (all ps > 0.10, Fig.
6b), encompassing a frontal-insular network were significantly positively associated with the decision
to punish. A stronger pattern expression of the reward PE under the punishment condition predicted
higher rates at rejecting unfair offers. Combined with our observation of a more sensitive signature for
reward PE (punishment vs accept) and the close link of this decoder pattern with punishment decisions
related multivariate neural expression, findings indicate that the reward PE (relative to emotional PEs)
exerts a stronger influence on the decision to punish a proposer allocating unfair offers.
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Fig. 6 Exploratory correlation between brain and behavior. (a) The scatter plots reflect that stronger pattern expression
within frontal-insular network representing punishment reward PE significantly correlate with increased number of
punishment choices, while this association was diminished for emotional PEs (b). The histograms show correlation
coefficients from permutation tests, whereas the dashed lines represent the true correlation.

Discussion

Traditional neurobiological decision-making models have determined the critical role of reward PEs
signaling in fronto-striatal circuits in shaping choices and learning across contexts 36. However, the
accompanying emotional response scaling the discrepancy between the expected and actual
experiences as well as the underlying neurocomputational mechanism and whether they differ and
interact with reward PEs has not been systematically determined. Here we combined a recently
developed and modified UG paradigm which allows to quantify differences between experienced and
predicted monetary reward and emotional experiences (along valence and arousal dimensions) in
terms of reward and emotional PEs, respectively, with fMRI and multivariate predictive
neurofunctional decoding to determine common and distinct influences of reward and emotional PEs
on the decision to punish an unfair offer and the underlying neurocomputational representations. Our
behavioral results confirmed that both reward and emotional PEs could significantly predict
punishment decisions, with participants punishing at higher rates when experiencing less reward or
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pleasantness or more arousal than expected. However, the reward PE exerted a comparably stronger
impact on motivating punishment choices compared to both emotional PEs. On the neural level,
reward and emotional processes exhibited distinct neural representations across univariate and
multivariate analyses. The experience of reward engaged the left dmPFC whereas the bilateral aINS
was engaged during emotional experiences. Moreover, reward and emotional PEs were encoded in
distinguishable brain-wide neural patterns. During the decision stage a fronto-insular network
including the bilateral ACC, left aINS, left dmPFC and IFG increased activation and neural expression for
punishment decisions, while the multivariate signatures of these regions closely resembled the
distributed reward, yet not emotional PE signatures. In support of this an exploratory correlation
analysis further demonstrated that a higher fronto-insular pattern expression under punishment
reward PE predicted the subsequent punishment decision following unfair offers. Taken together,
these findings shed lights on the computational and neural mechanism that distinguish emotional and
rewards evaluation and how violations of expected rewards and emotions determine social decision
making.

Rewards serve as an essential motivational driver that shapes adaptive decisions to optimize
reward outcomes and to avoid negative consequences 37. Classical models of learning and decision-
making have focused solely on reward and conceptualized individuals as optimal learners striving for
maximizing expected rewards 38-40. Despite the normative appeal of those models in describing how
humans evaluate and decide based on the difference between expected and actual reward outcomes,
these models do not provide a clear psychological mechanism to account for the accompanying
affective processes (e.g., emotion) and their influence on decision making. Punishment and
uncooperative decisions are driven by a diverse array of negative emotions, including sadness and
disappointed 41. In relation to reward computations a positive reward PE signaling that the experienced
reward exceeds expectations can evoke pleasant feelings while a negative reward PE may induce
strong negative emotions such as disappointment or anger 4. Utilizing computational modeling recent
studies found that momentary emotions are not only explained by reward outcomes but rather by the
combined influence of reward expectations and PEs that depend on these expectations 39,42. Together
this suggests that reward PEs shape not only future decisions but also the momentary emotional state
which in turn may impact the decisions. In line with this hypothesis a recent study demonstrated that
violations of expected emotions (in particular valence) linked with expected and experienced rewards
predict punishment choices in response to unfair offers stronger than reward PEs 17. Partly consistent
with this work, our results suggest that emotional and reward PEs are intertwined to guide social
decisions, such that both violations of reward and emotional predictions lead to punishment choices
towards unfair offers.

On the neural level, we initially examined whether the emotional and reward processes are
localized in separable neural systems and found that univariate activation in the dmPFC or aINS
characterized experienced reward or emotion, respectively. Numerous previous neuroimaging studies
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have suggested an important role of the dmPFC in metacognitive effort cost valuation during reward
decisions 43,44. However, this view has been recently challenged by findings indicating that the dmPFC is
a crucial site for deploying learnt reward values in action selection particularly during social inference
45,46. Supporting this role of the dmPFC, a recent rodent study reported dmPFC neuronal activity
accurately predicting reward availability and initiation of conditioned reward seeking after cue-reward
learning 47. In contrast, the aINS exhibited a stronger engagement during the report of actual
emotional experience upon receiving the offer. In the context of unfair monetary treatments, people
would generate negative emotions especially when they obtained less reward amount than expected.
This may increase the activation of aINS which plays an important role in the evaluation and
experience of aversive experiences, such as pain, disgust 48, introception and approach-avoidance
decisions in social contexts 22,49 and witnessing unfair transactions or unmoral acts 24,50.

Consistent with results from univariate analyses, multivariate predictive modelling also revealed
distinct distributed neural representations of emotional and reward PEs. However, we did not obtain a
multivariate decoder that could robustly and sensitively capture variation of emotional PEs. Despite
that, our recent study utilizing the data from this modified UG paradigm have determined that unfair
offers indeed evoke a strong aversive emotional response within subcortical regions for avoidance
responses (amygdala, PAG, thalamus, putamen) and cortical systems involved in emotional appraisal
such as the insula, dorsal ACC and lateral frontal regions 30. This may provide some inspiration for
understanding the possible neural pathways underlie the emotional PEs and could further support
spatial dissimilarity between emotional and reward PEs, since the reward PE was implicated in a
concentrated frontal-insular network encompassing the left ACC, right vlPFC and pINS. These findings
align with previous studies that negative reward PE followed by unfair offers are embedded in the
typical brain regions engaged in generating PE-like signaling for unexpected reward outcomes (ACC)51

and anticipation of uncertain punishments or rewards with the same neural codes (vlPFC) 52. Our
results, however, extend more broadly to indicate that negative reward PE computed based on the
unfair offers is also represented in the region for interoceptive processes 53 and exerting regulatory
top-down control over reward-related behaviors via its projections to the nucleus accumbens 23.

We further determined whether the fronto-insular network encompassing the dmPFC, aINS, ACC
and IFG represents or predicts punishment decisions via employing univariate and multivariate analytic
approaches. The dmPFC and aINS exhibited the most stable predictive weights across univariate and
multivariate analyses. These findings in line with the previously described role of the dmPFC in
personal moral decisions via serving as a conflict monitor for inequality of economic offers 54,55 and
self-disadvantageous unfairness 56. During human cooperation, the dmPFC is important for modulating
outcome value signals for oneself and others to guide behavior appropriate to the local social context
57. Similar to the functions of dmPFC in social decisions, the aINS holds independent neural populations
responding specifically to aversive states in a disadvantageous-inequality processing 48,58 and showing
heightened activity when rejecting unfair offers 24,59. In particular, the functional integration between
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ACC and aINS is enhanced when individuals make dishonest decisions for a monetary reward, as it
requires high need for emotional processing and conflicts detection 60 which can also be generated
during evaluating outcomes of self and proposers in our task. Significant activation of aINS and IFG can
be simultaneously observed when asking subjects to reappraise the proposers’ money dividing
intentions as more negative and is linked with a greater number of unfair offers rejected 61. However
currently the specific contributions of the separate systems in terms of punishment decisions during
norm violations remain unclear. Our findings may bridge this gap by determining which PE
representation significantly predict punishment choices. Within this context our predictive models
demonstrated high specificity of fronto-insular neural predictive weights for the reward but not the
emotional PEs to the multivariate response of punishment decisions. Moreover, we revealed that aINS
and ACC generally engaged in unfairness perception and rejection of unfair offers given that they
demonstrated increased pattern expression of punishment reward PE to significantly predict
behavioral punishment choices. Overall, these findings underscore the critical role of reward PE coding
in the fronto-insula system on decisions in response to unfairness.

Our study extends traditional learning and economic theories 38,40 by highlighting the crucial
contribution of both violations of expected emotion and rewards to the decisions. The prevailing
theories posit that humans make decisions via assigning values to prospective gains or loss 40, and have
only implicated the activation within frontal-striatal circuits in representing value of anticipated or
received rewards 36. We updated this view by demonstrating that the neurofunctional computation of
reward is accompanied by simultaneous computations of emotional states and further showed that
these processes are supported by distinguishable brain systems, such that the dmPFC encoded the
receipt of the actual reward whereas the aINS encoded experienced emotions. Utilizing a more
rigorous machine-learning based neural decoding method, the multivariate neural patterns between
reward and emotional PEs were also found dissimilar. In general, our findings extend influential
theories of decisions which mainly focused on reward effects on choice behaviors and emphasize the
importance of considering emotions in economic models, especially how these factors are dissociable
from neural pathways during social decisions.

It is worth highlighting potential limitations of the present study. Although we demonstrated
consistent behavioral results via the use of multiple logistic regression models 17, the dynamic changes
of subjects’ reliance on those PEs to make final decisions are not clear. This concern could be well
resolved if future studies employed computational modeling to track the trial-wise updates of PEs and
the relevant decision variations. Additionally, no direct modulation of the underlying neural processes
was included and future studies may consider employing pharmacological approaches to regulate
associated signaling systems such as the dopamine 62, oxytocin 63 or angiotensin 64,65 and to determine
whether separable signaling systems underlie emotional and reward PEs.

In conclusion, our study supports the dissociable contribution of emotion and reward evaluations
to social decisions by identifying distinct brain regions engaged in experienced emotions and rewards,
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and proving dissimilar multivariate neural patterns between PEs generated from those experiences.
Despite the contribution of both emotional and reward PEs to social decision making, the latter could
strongly guide social decisions given that the frontal-insular predictive neural expression of reward PE
specifically correlates with multivariate pattern of punishment decisions and predict behavioral
punishment choices. As such, our findings pave the way towards more precise understanding about
how emotions and rewards distinctively represented in the brain to affect social decisions, and may
have further implications on clinical disorders with deficient reward and emotion processing in
complex social contexts.

Methods

Participants

The study was approved by the Research Ethics Committee of the University of Electronic Science and
Technology of China (1061422101024711) and adhered to the latest revision of the Declaration of
Helsinki. We employed an fMRI experimental design with N = 50 (25 Female, 25 Male) individuals. A
total of 7 subjects were excluded due to fMRI data acquisition failure (fMRI technique issue and
withdraw during the experiment, n = 3) and no punishment decisions (not rejecting the unfair offer, n =
4), leading to a final sample of N = 43 (23 Female, Mean ± SD, age = 21.57 ± 2.15 years; 20 Male, age =
20.90 ± 2.07 years) included into main analyses.

Exclusion criteria for enrollment were: (1) an excessive head movement (>2 mm translation or 2°
rotation), (2) a current or a history of psychiatric, neurological, or other medical disorders, (3) current
or regular use of psychotropic substances including nicotine, (4) a body mass index < 18 or > 24.9, (5)
visual or motor impairments, and (6) contraindications for MRI.

Experimental paradigm

An adapted and validated reward-emotion UG paradigm was employed 17(Fig. 1). Similar to the
classical UG task participants were responders who received an unfair monetary offer (split) from a
proposer, and then decided whether to accept or reject the offer in the modified version 17. However,
more specifically, participant were instructed to give the following responses before each offer: 1) how
much money (within a range of ¥2.5 to ¥50, 20 offers; ¥, Chinese Yuan) they would expect to receive
from the proposer; and 2) rating the emotions that they expected to feel based on their anticipated
monetary split along the two dimensions, valence (i.e., positive vs negative emotion) and arousal (i.e.,
intensity/strength of emotion). Following the offer all individuals reported: 1) their actual emotional
experience upon receiving the offer; and 2) decided whether to accept or reject the proposer’s offers.
A total of 40 task trials – dispersed across two fMRI runs with 20 trials each (2 trials per offer, trial
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mean duration 3s) were presented. Each task trial began with a fixation cross presented for a jitter
interval of 500ms followed by the presentation of expected money and anticipated emotion, actual
offer and experienced emotions, as well as the decisions periods. The offers followed a uniform
distribution allowing each participant to respond to the full range of fair (¥50 vs ¥50) to unfair offers
(¥97.5 vs ¥2.5), whereas the order of the offers was randomized.

MRI acquisition, preprocessing and first level analysis

MRI data were acquired on a 3T GE Discovery MR system (General Electric Medical System, Milwaukee,
WI, USA) and preprocessed using standard workflow in SPM 12 (Statistical Parametric Mapping;
http://www.fil.ion.ucl.ac.uk/spm/; Welcome Trust Centre for Neuroimaging) (see Supplemental
Methods).

To explore the brain regions involved in anticipated and experienced reward/emotion, and
punishment/accept decisions, we firstly establish a general linear model (GLM) incorporating separate
onsets of prediction or experience of reward, arousal or valence, respectively, as well as the decision
period, while the six head motion parameters were included as covariates. To further determine the
specific neural expressions for reward and emotional PEs in the context of accept or punishment
decisions a separate parametric GLM was modelled including the experienced rewards, arousal and
valence events for punishment and accept decisions as regressors, each modulated by the respective
trial-wise PE.

Behavioral analyses

With the purpose of evaluating predictive contribution of all PEs to punishment decisions
simultaneously we employed a logistic mixed-effects regression model with three PEs as independent
variables and punishment choices as the dependent variable via the lme4 R package (https://cran.r-
project.org/). The computation of PEs was based on the disparity between the actual experience at the
time of offers and prior expectation. It should be noted that a zero value of PEs indicated instances
where participants’ actual experiences corresponded with their expectations, resulting in the absence
of errors. As such all PEs were firstly scaled (i.e., PE/ sqrt(sum(PE^2)/length(PE)-1)) but not mean-
centered before being included to the regression model to ensure that β coefficients could be
comparable. To account for multicollinearity in regression models we first estimated the variance
inflation factor (VIF) 66 (similar approach see Xu et al., 2020, Li et al., 201967,68) with results arguing
against problematic collinearity (VIFReward_PE= 1.52, VIFArousal_PE= 1.60, VIFValence_PE= 1.21). We also
performed separate regression analyses in female and male subjects to avoid possible gender bias on
PEs’ predictive role to punishment decisions.
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To further determine the efficiency of the current paradigm and to further control gender effects,
we scaled the difference between proposer’s and responder’s reward amounts in terms of unfairness
(e.g., ¥92.5 - ¥2.5 = ¥90) and included it with gender as predictors for punishments choices in the same
regression model. Unfairness significantly predicted the punishment decisions with the effect being
equal in female and male subjects (Gender × Unfairness, β = 0.03, z = 0.05, p = 0.96, Fig. S1). This
confirms a close association between the unfairness manipulation and the punishment decision across
both genders.

Univariate voxel-wise analyses

Considering the pivotal role of reward and emotions in guiding decisions, we aim to identify whether
the neural activations of reward and emotion were distinct during prediction and experience moments.
Given the strengths of univariate voxel-wise analyses in terms of determining the spatial localization of
mental processes69, we initially employed this method to examine brain regions that were differentially
engaged for reward and emotions (i.e., arousal and valence) during prediction and experience periods,
respectively, via including the first level contrasts (i.e., Predictionreward, Predictionarousal, Predictionvalence;
Experiencereward, Experiencearousal, Experiencevalence) into two separate univariate voxel vise one-way
ANOVAs. All resulting maps from the whole brain analyses were thresholded at the peak level of family
wise error (FWE) correction at p < 0.05. Furthermore, to assess the neural activations differences
between accepting and punishing decisions, we utilized the univariate voxel wise one sample t test on
the first level contrast (i.e., Punishment decision > Accept decision) with the resulting t-value maps
being thresholded at the cluster level of FWE correction at p < 0.05 (initial cluster threshold, p < 0.001,
uncorrected; see recommendations in Slotnick, 201770).

Multivariate voxel pattern analyses

Compared to the traditional univariate analyses, the machine-learning based multivariate pattern
analyses can provide more comprehensive and precise neural representations of cognitive and mental
processes30,31. Therefore we utilized a linear support vector machine (C = 1, linear kernel) implemented
in Canlabcore tool (https://github.com/canlab/CanlabCore) with a leave-one-out cross validation
procedure to get differentiate neural patterns of reward and emotional PEs separated by punishment
and accept decisions. Moreover, we also assessed whether the neural expressions of reward and
emotional PEs were similar via conducting pattern similarity analyses between multivariate neural
patterns of all PES and calculating group-level correlations between activations of contrast images for
PEs based on bootstrap tests with 500 iterations.

To build liner neural expression maps predictive of the levels of reward and emotional PEs, we
established exploratory GLM models to get different beta map for each reward and emotional PE level.
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The 20 reward and emotional PEs were sorted with descend sequence and were then divided into 5
levels (i.e., 5,4,3,2,1) in each run for each subject. Next, we employed support vector regression
analyses using a linear kernel (C= 1) (in line with our previous works30,31) implemented in the Spider
toolbox (http:// people.kyb.tuebingen.mpg.de/spider) with individual beta maps (one per PE level for
each subject) as features to predict participants true PE value. To facilitate a robust determination of
the predictive accuracy of the neurofunctional signature we employed various metrics including
correlation and forced-choice classification accuracy. We used overall (between- and within-subjects;
43 × 5 = 215 pairs in total) and within-subject (5 pairs per subject) Pearson correlations between the
cross-validated predictions and the actual PEs to indicate the effect sizes. We also assessed
classification accuracy of the signatures of PEs using a forced-choice test, where signature responses
were compared for two conditions tested within the same individual, and the higher was indicated
large violations of predicted emotions or rewards (see Supplemental Methods).

Exploratory correlation analysis

The behavioral and fMRI results suggested a pronounced predictive role of reward PE to punishment
decisions. We thus conducted an exploratory correlation analyses with permutation tests (10,000
permutations) to identify whether multivariate pattern expressions for reward PE generated before
punishment decisions could predict behavioral punishment choices. For the sake of completeness and
increasing transparency we also reported the correlations between punishment decisions and the
multivariate pattern expressions for emotional PEs signaling.
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