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Abstract   22 

The human temporoparietal junction (TPJ) is a brain area crucial for processing social information. 23 

Although brain stimulation studies have started to explore the causal function of TPJ under social 24 

contexts, few have explicitly considered bilateral TPJ as target regions. Here, leveraging non-25 

invasive continuous theta-burst stimulation (cTBS) and hierarchical Bayesian computational 26 

modeling, we tested whether left or right TPJ (with vertex as control) is causally involved in how 27 

dissenting choices by others influence individuals’ choice adjustments in goal-directed learning. 28 

In our social learning paradigm, participants (N = 31) first made their private decision, and then 29 

were allowed to re-adjust their choices after observing choices of four other players. Behaviorally, 30 

we show that disruption of the left, but not the right TPJ, weakened participants’ choice adjustment 31 

and delayed their response speed when confronted with dissenting information from the other 32 

players. Computationally, disrupting activity in the left TPJ attenuated the degree of computing 33 

social influence during choice adjustment, whereas the extent to which how observational learning 34 

from others’ choices was integrated into direct learning remained intact. Together, our results 35 

provide evidence for the causal role of left TPJ in social influence during goal-directed learning 36 

and shed light on the relational function (with respect to oneself) of the TPJ in social cognition.  37 

 38 

INTRODUCTION 39 

The human temporoparietal junction (TPJ) is a brain area crucial for processing social interaction, 40 

Theory of Mind (ToM), and self-other distinction (Ruff, Fehr, 2014; Schaafsma et al., 2015; 41 

Deschrijver and Palmer, 2020; Rusch et al., 2020; Schurz et al., 2021). Despite a recent focus on 42 

the right TPJ as a primary site for representing such social information, many functional magnetic 43 

resonance imaging (fMRI) studies have indeed reported bilateral activation of TPJ in social 44 

influence in goal-directed learning (Zhang and Gläscher, 2020), strategic social decision-making 45 

(Konovalov et al., 2021), and goal emulation in observational learning (Charpentier et al., 2020), 46 

and these results are consistent with large-scale, automated meta-analytic findings reported on 47 

NeuroSynth (Yarkoni et al., 2011). For example, we have previously documented the 48 

neurocomputational role of bilateral TPJ in computing social influence in goal-directed learning, 49 

in which participants were able to re-adjust their choices after observing choices of four other 50 

players in the same learning environment (Zhang and Gläscher, 2020). To establish the causal 51 
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relationship between TPJ and social information processing, several brain stimulation studies have 52 

demonstrated a causal involvement of right TPJ in moral judgments (Obeso et al., 2018), social 53 

norm violation of others (Baumgartner et al., 2014), strategic social interaction (Hill et al., 2017), 54 

and self-other distinctions (Bukowski et al., 2020). However, most of these studies have, in fact, 55 

only stimulated right TPJ, and not explicitly tested the differential contributions of left and right 56 

TPJ to these phenomena.  57 

To bridge this gap, here we employed a modified version of our social learning task and 58 

explicitly tested whether left or right TPJ was casually involved in representing dissenting social 59 

information when individuals were about to make choice adjustments. With the well-established 60 

continuous theta-burst stimulation (cTBS) protocol (Huang et al., 2005) to left and right TPJ and 61 

hierarchical Bayesian reinforcement learning models (Zhang et al., 2020), we reported that left, 62 

but not right, TPJ was causally related to the computation of social influence during goal-directed 63 

learning. 64 

 65 

RESULTS  66 

Human participants (N = 31, 17 females) performed a modified version of our social learning task 67 

(Zhang and Gläscher, 2020), which relies on a probabilistic reversal learning paradigm (Figure 68 

1A; Gläscher et al., 2009). On each trial, participants made their initial choice (Choice 1), and after 69 

being informed about choices from the other four players, participants were allowed to re-adjust 70 

their final choice (Choice 2), before receiving the outcome. Participants were incentivized to earn 71 

as much money as possible. As we demonstrated previously (Zhang and Gläscher, 2020), the 72 

multiple reversal structure (Figure 1B) entailed adequate uncertainty such that it was much wiser 73 

for the participants to consider the other players’ decisions for better detection of changes after 74 

each reversal. Crucially, participants were informed that the other four players were intelligent 75 

computer algorithms (see Materials and Methods), which were able to learn from reward 76 

feedback as well as learn from others’ choices – including the choices of the participant. The 77 

algorithms were in fact simulated from our previous computational model that best matched human 78 

behavior in the same task setup (Zhang and Gläscher, 2020). All participants underwent three 79 

cTBS sessions in a counterbalanced order (Figure 1D). We conducted such a fully randomized 80 

within-subject, rather than between-subject, design so as to minimize heterogeneity between 81 
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different groups, thus maximizing the statistical power in estimating cTBS effects (Charness et al., 82 

2012). The stimulation sites included the vertex (as a non-active control region) and right as well 83 

as left TPJ, the Montreal Neurological Institute (MNI) coordinates of which (right: [50, −60, 34]; 84 

left: [−48, −62, 30]; Figure 1E) were extracted based on our previous finding. A neuronavigation 85 

pipeline (Polanía et al., 2018) was implemented to obtain stimulation targets tailored to each 86 

participant’s brain anatomy. 87 

 88 

Figure 1. Experimental design.  89 

(A) Task design. On each trial of the experiment, participants (N = 31) made an initial choice (Choice 1), and after 90 

observing the choices from the other four players, participants were asked to make adjustments (Choice 2), 91 

followed by the outcome. Three stimulus pairs (one pair shown here) were used with a counterbalanced order 92 

across stimulation sites.  93 

(B) Example reward schedule. Reward contingency reversed every 8–12 trials, following a uniform distribution.  94 

(C) Illustration of group consensus (perspective from each participant). Note that this illustration was never shown 95 

to the participants.  96 

(D, E) Neurostimulation protocol. After a short practice round, participants received individually localized 97 

continuous theta-burst stimulation (cTBS) of areas of interest, right TPJ (Montreal Neurological Institute [MNI] 98 

target coordinates [50, −60, 34]) and left TPJ (MNI [−48, −62, 30]), with the vertex as a non-active control region. 99 

Participants underwent the experiment in an adjacent testing room next. The order of left or right TPJ cTBS was 100 

counterbalanced across participants with vertex stimulation always between the TPJ stimulation to reduce potential 101 

interference effects due to hemispheric crosstalk.  102 

 103 

Model-agnostic effects of cTBS on choice behavior  104 

We sought to examine whether stimulating TPJ altered choice switching, response speed, and 105 

choice accuracy during participants’ choice adjustment after social influence (i.e., Choice 2). 106 

Across all three analyses, we were primarily interested in the stimulation effect on the interaction 107 
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between the relative direction of the group (with vs. against one’s own first choice) and group 108 

consensus (2:2, 3:1, and 4:0, indicated from participants’ perspective; Figure 1C), as this 109 

interaction was one of the major findings in our previous study (Zhang and Gläscher, 2020). Thus, 110 

we computed the difference between the “against” and “with” conditions at each consensus level 111 

as the dependent variable for each measurement of interest, and fitted 3 (cTBS sites: right TPJ, 112 

vertex, left TPJ) × 3 (group consensus: 2:2, 3:1, and 4:0) linear mixed models (LMM). 113 

We first assessed whether stimulating TPJ reduced choice switch probability (Figure 2A, 114 

showing the actual data instead of the difference measurement), namely, how likely participants 115 

switched to the other choice alternative after observing the four choices of the other players. The 116 

LMM revealed a significant main effect of consensus (F2,52 = 11.460, p < 0.001; βconsensus_3:1 = 117 

0.241, p = 0.007, β being the standardized coefficient; βconsensus_4:0 = 0.367, p < 0.001), and a 118 

significant stimulation × consensus interaction (F4,180 = 3.897, p = 0.005). The main effect of 119 

stimulation remained insignificant (F2,30 = 1.402, p = 0.262). This two-way interaction was largely 120 

driven by the difference in the “4:0” condition, such that disrupting activity in the left TPJ 121 

significantly reduced choice switch probability relative to the right TPJ (t64 = 3.587, p = 0.018, 122 

Tukey corrected). No other pairwise comparisons yielded significant results. Relatedly, we asked 123 

whether stimulating TPJ affected response time (RT) during participants’ choice adjustment 124 

(Figure 2B). With the same LMM setup, we found a trend level effect of stimulation (F2,80 = 2.400, 125 

p = 0.097), and the two other effects were not significant (consensus: F2,43 = 0.121, p = 0.887; 126 

interaction: F4,144 = 1.193, p = 0.316). However, we found a significant LMM effect of interaction 127 

(βlTPJ×consensus_4:0 = 0.197, p < 0.028), suggesting that the RT was longest when the activity in the 128 

left TPJ was disrupted in the consensus 4:0 condition. Last, now that we had some indication that 129 

stimulating the left TPJ impacted both choice switch probability and RT, we sought to examine 130 

whether the accuracy (i.e., deciding on the more rewarded option) of Choice 2 was also altered 131 

(Figure 2C), based on that we previously had observed an increased performance after 132 

incorporating others’ choices (Zhang and Gläscher, 2020). Following the same LMM setup, we 133 

observed a significant main effect of consensus (F2,130 = 4.66, p = 0.011; βconsensus_3:1 = 0.326, p = 134 

0.020). The main effect of stimulation (F2,34 = 0.490, p = 0.617) and the interaction (F4,130 = 0.524, 135 

p = 0.719) were not significant.  136 

Together, our model-agnostic analyses showed that when the neural activity in the left TPJ 137 

was disrupted by cTBS, participants were less inclined to adjust their choices and the associated 138 
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response speed of making adjustment was remarkably reduced, especially when participants’ 139 

choices were contradicted by the others’ choices.  140 

 141 

 142 

Figure 2. Neurostimulation effects on behavior.  143 

(A) cTBS effects on participants’ choice switch probability, with a focus on the interaction between group 144 

consensus (choice consensus formulated by each computer algorithm; as Figure 1C) and relative direction (with 145 

versus against) of the group. Lines indicate means ± within-subject standard error.  146 

(B) cTBS effects on the response time of participants’ choice switching. Format is as in (A). 147 

(C) cTBS effects on participants’ choice accuracy after switching. Format is as in (A). 148 

 149 

Computational Mechanisms of social influence in goal-directed learning 150 

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 14, 2022. ; https://doi.org/10.1101/2022.06.13.495824doi: bioRxiv preprint 

https://doi.org/10.1101/2022.06.13.495824
http://creativecommons.org/licenses/by-nc/4.0/


7 

 

Using computational modeling, we aimed to formally quantify latent mechanisms underlying how 151 

social influence was computed on a trial-by-trial basis and to uncover nuanced computational 152 

contributions to the behavioral differences across cTBS sites. Although we focused on how 153 

disruption of the TPJ impacted behavior after receiving choices from the others when outcomes 154 

were delivered, participants were also able to learn the others’ choice-outcome combination and 155 

integrate such observational learning (through vicarious valuation) into their own valuation on the 156 

next trial. We thus constructed our winning model (Figure 3A; see Table 1 for model comparison) 157 

following the model development process similar to and detailed in our previous computational 158 

account (Zhang and Gläscher, 2020). This procedure subsequently allowed us to investigate 159 

whether disruption of TPJ altered vicarious valuation in social learning.  160 

On each trial, the option value of Choice 1 (A or B) was modeled as a linear combination 161 

between values from direct learning (Vself) and values from social learning (Vother). After observing 162 

choices from the others, participants’ Choice 2 (switch or stay) was modeled as a function of two 163 

counteracting influences: (a) the group dissension (Nagainst) representing the social influence, and 164 

(b) the value difference between participants’ chosen and unchosen options (Vchosen,C1,t – 165 

Vunchosen,C1,t), representing the distinctiveness of the current value estimates. Lastly, when all 166 

outcomes were delivered, Vself was updated using the fictitious update reinforcement learning (RL) 167 

model (Gläscher et al., 2009; Zhang and Gläscher, 2020), whereas Vother was updated through 168 

tracking the other four players’ choice preference history (i.e., the others’ decisions in the recent 169 

past; Figure 3B). Considering the within-subject structure in our experimental design, we 170 

implemented the within-subject effect coding scheme with explicit variance-covariance matrices 171 

(see Star Methods) to more accurately reflect the interdependency across conditions for each 172 

participant under the hierarchical Bayesian analysis framework (Ahn et al., 2017; Zhang et al., 173 

2020). Given the aim of the current study, we focused on the model parameters relevant to 174 

computing social influence (β(Nagainst)) and social learning (β(Vother)), respectively (but see Table 175 

1 for all posterior parameters).  176 

In line with our model-agnostic behavioral results of choice switch probability (Figure 177 

2A), the degree each participant weighed dissenting social information (i.e., β(Nagainst)) during 178 

choice adjustment differed across stimulation sites (one-way repeated-measures ANOVA: F1,30 = 179 

9.830, p = 0.004; Figure 3D). Further analysis suggested that disruption of the left TPJ decreased 180 

the computation of social influence as opposed to both the right TPJ (t60 = 4.407, p = 0.0001, Tukey 181 
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corrected) and the vertex (t60 = 2.626, p = 0.029, Tukey corrected), and no significant difference 182 

was found between the right TPJ and the vertex (t60 = 1.871, p = 0.185, Tukey corrected). 183 

Interestingly, no difference was found across stimulation sites regarding how participants 184 

integrated vicarious value computation (i.e., β(Vother)) into their own learning processes (one-way 185 

repeated measures ANOVA: F1,30 = 3.718, p = 0.061; Figure 3C), and this result was additionally 186 

supported by a Bayes factor (Schmalz et al., 2021) analysis (BF10 = 0.106, with default Cauchy 187 

priors).  188 

In the last step, we sought to test the association between model parameter and behavior. 189 

We reasoned that if the degree of computing social influence was reduced when the left TPJ was 190 

stimulated, we ought to anticipate its weaker predictability of switching behavior. Indeed, we 191 

found that disrupting the left TPJ led to the weakest effect of β(Nagainst) in predicting choice switch 192 

probabilities (quantified as slopes computed from Figure 2A) with a simple linear regression 193 

(rTPJ: b = 0.084, p = 0.004; vertex: b = 0.109, p = 0.031; lTPJ: b = 0.063, p = 0.015; effects 194 

compared with Wald tests: prTPJ_vertex = 0.416, prTPJ_lTPJ = 0.168, plTPJ_vertex = 0.003, Bonferroni 195 

corrected p-value = 0.05/3 = 0.016; Figure 3E). Putting together, our computational modeling 196 

effort suggested that disruption of the left TPJ reduced the computation of social influence from 197 

the others in the group, whereas the vicarious social learning process by observing the others’ 198 

actions remained intact.  199 
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 200 

 201 

Figure 3. Computational modeling and cTBS effects on model parameters.  202 

(A) Schematic representation of the winning computational model (M6). Participants’ initial behaviors (Choice 1) 203 

were accounted for by value signals updated from both direct learning (Vself) and social learning (Vother); choice 204 

adjustments (Choice 2) were ascribed to the valuation of initial behaviors (Vchosen,t – Vunchosen,t) and social influence 205 

from the other players (Nagainst); Vself was updated via a fictitious reinforcement learning model, while Vother was 206 

updated through tracking other players’ choice preference in past trials.  207 

(B) Computations of Vself and Vother. V, value; R, outcome; α, learning rate; δ, reward prediction error; ρ, others’ 208 

choice preference; C2A/B,s, others’ choices; I0.5(a,b): beta cumulative distribution function at 0.5.  209 

(C) cTBS effects on participants’ degree to integrate Vother into their valuation (β(Vother)). Violin plots show Kernel 210 

density estimation; box plots show mean, standard error, and standard deviation; dots show individual parameter 211 

estimates.  212 

(D) cTBS effects on participants’ computation of social influence (β(Nagainst)). Format is as (C). 213 

(E) cTBS effects on the relationship between β(Nagainst) and participants’ susceptibility to social influence (i.e., 214 

slope of switch probability calculated from Figure 2A). 215 

 216 

Table 1. Candidate computational models, model comparison, and winning model’s parameters. # Par., number 217 

of free parameters at the individual level per stimulation condition; ∆LOOIC, leave-one-out information criterion 218 

relative to the winning model (lower LOOIC value indicates better out-of-sample predictive accuracy); weight, model 219 

weight calculated with Bayesian model averaging using Bayesian bootstrap (higher model weight value indicates 220 

higher probability of the candidate model to have generated the observed data); HDI, highest density interval estimated 221 

from the posterior distributions. M4 (in bold) is the winning model. See Materials and Methods for description of all 222 

candidate models.  223 
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Class Model Description # Par. ∆LOOIC Weight 

Non-social model 

(baseline) 

M1 Fictitious RL 4 283 0 

Social model: 

social influence 

M2 M1 + social influence 5 117 0 

Social models: 

social influence  

   +  

social learning 

M3 M2 + others’ RL update 8 100 0 

M4 M2 + others’ action preference 6 – 0.811 

M5 M2 + others’ current reward 6 35 0.189 

M6 M2 + others’ cumulative reward 7 80 0 

M4 model parameters (group-level mean and 95% HDI) 

Parameter left TPJ Vertex right TPJ 

α 0.25 [0.15 0.38] 0.30 [0.20 0.41] 0.23 [0.12 0.33] 

β(Vself) 1.85 [1.25 2.41] 1.73 [1.18 2.20] 1.92 [1.37 2.58] 

β(Vother) 0.45 [0.14 0.73] 0.43 [0.14 0.73] 0.50 [0.19 0.86] 

β(bias) −2.06 [−2.44 

−1.67] 

−2.17 [−2.52 

−1.79] 

−2.49 [−2.90 

−2.12] 

β(Vchosen−Vunchosen) −0.65 [−0.95 

−0.38] 

−0.56 [−0.81 

−0.29] 

−0.76 [−1.04 

−0.48] 

β(Nagainst) 0.87 [0.37 1.41] 1.01 [0.55 1.49] 1.50 [0.95 2.02] 

 224 

 225 

DISCUSSION 226 

Leveraging non-invasive brain stimulation and comprehensive computational modeling, we tested 227 

whether left or right TPJ causally supports the computation of social influence in goal-directed 228 

learning. We show that disrupting activity in the left TPJ resulted in reduced choice adjustment 229 

and declined reaction speed, especially when individuals were contradicted by the entire group. 230 

Our model further revealed that disruption of the left TPJ diminished the extent to which social 231 

influence was computed, yet the integration of social learning into individuals’ own valuation was 232 

intact. 233 
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Our previous fMRI results (Zhang and Gläscher, 2020) clear demonstrated that both right 234 

and left TPJ encode dissenting social information, but the current results extend these findings 235 

such that only left TPJ appears to exert a causal influence on the ensuing behavioral change. 236 

Moreover, as we previously reported that bilateral TPJ and the dissenting social information 237 

encoded therein in combination with the behavioral adjustment (and the corresponding neural 238 

signal in the dorsolateral prefrontal cortex) modulate value computations in prefrontal cortices 239 

(ventromedial prefrontal cortex, vmPFC, and anterior cingulate cortex, ACC, encoding direct 240 

learning and observational learning, respectively), it is plausible to infer a reduced connectivity 241 

pattern between left TPJ and vmPFC/ACC based on the current TMS data. It is worth noting that 242 

this reduced connectivity pattern remains speculative and future combined TMS-fMRI 243 

experiments will be required.  244 

These findings are arguably in accordance with two lesion studies highlight the role of left 245 

TPJ in mentalizing about others: patients with lesions in this part of the brain are impaired in 246 

cognitive tasks that require thinking about false beliefs of others and taking their perspective 247 

(Samson et al., 2004; Apperly et al., 2007). In addition, a recent fMRI study reported functionally 248 

different roles for left and right TPJ in an interactive decision-making task requiring representing 249 

about the other’s strategies (Ogawa and Kameda, 2019). They compared human performance 250 

against another human participant, an intelligent learning algorithm, and a simple fixed probability 251 

rule, and reported that right TPJ showed the largest effect when playing against another human 252 

participant, whereas left TPJ exhibited similar effects when playing against a human or an 253 

intelligent algorithm. In light of these findings, stimulating right TPJ in our task, in which 254 

participants played together with an intelligent agent, might not have led to reduction in social 255 

influence, because no other human players were involved. In contrast, the reduction in switch 256 

probability and the correspondingly smaller β(Nagainst) following TMS of left TPJ might reflect a 257 

more general impairment in social reasoning about the others independent of whether the 258 

interacting players are human or intelligent artificial algorithms.  259 

A potential caveat of this study revolves around the role of the TPJ in the functions of the 260 

dorsal attention network (Corbetta and Shulman, 2002). Stimulating TPJ might have also corrupted 261 

attentional selection and the observed effect might simply reflect altered attentional processing 262 

rather than the encoding of dissenting social information. However, this is unlikely for several 263 

reasons. First, our stimulation site was identified as the overlapping regions between our previous 264 
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ROIs and the NeuroSynth brain masks resulted from “mentalizing”, rather than “attention”, as the 265 

search term. Moreover, a detailed inspection of the brain regions involved in attentional 266 

reorientation and ToM reveals spatially separable and only partially overlapping regions in the TPJ 267 

(Decety and Lamm, 2007; Carter and Huettel, 2013; Kiesow et al., 2021). Furthermore, an 268 

attentional account would leave the differences between left and right TPJ in our task unanswered. 269 

Finally, our cognitive modelling revealed that the value signal computed for the other players was 270 

non-zero and comparable in all three stimulation conditions making a pure attentional explanation 271 

rather unlikely. Nevertheless, in future brain stimulation studies of the TPJ, it would be desirable 272 

to measure the representation of social information and attentional processing simultaneously to 273 

investigate potential interaction effects more directly. 274 

In conclusion, our study revealed a causal role of left TPJ in encoding dissenting social 275 

information about the choices of others and is therefore an essential node in the comprehensive 276 

brain network that integrates one’s own and others’ decisions into a coherent value signal that is 277 

used for making and updating social decisions.  278 

 279 

 280 

 281 

MATERIALS AND METHODS:  282 

 283 

Data and code availability 284 

All data needed to evaluate the conclusions in the paper are present in the paper and the 285 

Supplementary Materials. Behavioral data and custom code to perform analyses can be accessed 286 

on the GitHub repository: https://github.com/lei-zhang/SIT_TMS.  287 

 288 

Participants 289 

Forty right-handed participants were invited to participate in the study. No one had any history of 290 

neurological and psychiatric diseases, nor currently used medication except contraceptives. Nine 291 

participants were excluded for various reasons: one participant had participated in our previous 292 

study, one participant had extremely low motor threshold, three participants experienced technical 293 

failure (two with experimental program crash and one with TMS device overheat), one participant 294 

did not make the choice adjustment, and four participants missed more than 30% of the responses 295 

during one or more stimulation. The final sample consisted of 31 participants (17 females). All 296 
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participants gave informed written consent before the experiment. The study was conducted in 297 

accordance with the Declaration of Helsinki and was approved by the Ethics Committee of the 298 

Medical Association of Hamburg (PV3661). 299 

 300 

cTBS stimulation sites 301 

We had three stimulation sites in the current experiment, right TPJ, left TPJ, and vertex. We based 302 

our bilateral TPJ stimulation sites in Brodmann area 39 on the 2nd-level neuroimaging map from 303 

the parametric modulation of dissenting social information from our previous study (Zhang & 304 

Gläscher, 2020 Figure S4/Table S4). The peaks (MNI coordinates) of the bilateral TPJ were 305 

identified at x = 50, y = −60, z = 34 (right), and x = −48, y = −62, z = 30 (left), respectively, 306 

considering the joint areas between our previous 2nd-level map and the meta-analytical maps 307 

derived from NeuroSynth (https://neurosynth.org/) using the term “mentalizing” (meta-analysis of 308 

151 studies). Subject-specific stimulation coordinates were obtained using inverse normalization 309 

with trilinear interpolation implemented in SPM12 (Statistical Parametric Mapping; Wellcome 310 

Trust Center for Neuroimaging, University College London, London, UK) from MNI space to 311 

native space. Those coordinates were then superimposed onto each participant’s native structural 312 

(T1) images obtained no older than 6 months prior to the experiment. For the non-active control 313 

site, we chose the vertex, defined for each participant in their own T1-weighted MRI scan as the 314 

intersection of the central sulci from both cerebral hemispheres. Vertex has been commonly used 315 

as a control stimulation site as stimulating vertex has minimal task-relevant effects (Polanía et al., 316 

2018). Locating subject-specific stimulation sites, as well as creating landmarks of each 317 

participant’s brain, was implemented with the neuronavigation pipeline in the Brainsight software 318 

(Rogue Resolutions Inc Montreal, Quebec, Canada). All participants were blinded as to the 319 

stimulation sites and the neuronavigation setup.   320 

 321 

Stimulation protocols 322 

We applied a cTBS transcranial magnetic stimulation (TMS) protocol to each participant-specific 323 

coordinates identified with the above procedure, with the handle pointing posteriorly. Following 324 

previous cTBS studies on social neuroscience (e.g., Hill et al., 2017; Bukowski et al., 2020), the 325 

cTBS stimulation protocol comprised 600 pulses administered for 40 s, in bursts of 3 pulses at 50 326 

Hz (20 ms) repeated at intervals of 5 Hz (200 ms). Stimulations were controlled and delivered 327 
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using the Magstim-Rapid-2 stimulator with an air-cooled 70 mm figure-8 coil (Magstim Co Ltd. 328 

Spring Gardens, Whitland, UK). The stimulation intensity was determined as 80% of the active 329 

motor threshold. Motor threshold was determined as the lowest single TMS pulse intensity 330 

required (through a staircase procedure) to elicit a slightly visible twitch of the thumb and/or the 331 

index finger on in more than 5 out of 10 times stimulation while participants maintained a constant 332 

pressure between the thumb and the index finger at 20% of maximum force. We employed a 333 

within-subject design across three stimulation sites. To prevent potential carry over effect, the 334 

stimulation of the vertex was always kept in the middle, while the order between the right and the 335 

left TPJ was counterbalanced. Each experimental session lasted shorter than 25 minutes, which 336 

was adequately within the hypothesized duration of disrupted excitability at the stimulated area 337 

(Romero et al., 2020). 338 

 339 

Experimental task 340 

The core of our social learning task was a probabilistic reversal learning (PRL) paradigm, where 341 

each choice option was associated with a particular reward probability (i.e., 70% and 30%). After 342 

a variable length of trials (i.e., 8-12 trials), the reward contingencies reversed, such that individuals 343 

needed to re-adapt to the new reward contingencies in order to maximize their outcome. That said, 344 

the PRL task assured constant learning throughout the entire experiment. 345 

 346 

Different from our previous study involving real-time interactions of 5 participants (Zhang and 347 

Gläscher, 2020), in the current study only one participant was tested. For each experimental 348 

session, participants were informed that they were about to play with four independent “intelligent 349 

computer algorithms” that best matched human behavior in the previous study. Hence, there was 350 

no deception in the current study. Importantly, participants were instructed that those computer 351 

algorithms were able to learn from their own errors, and also take decisions of the others into 352 

consideration (i.e., the other three algorithms together with the participant). In fact, these 353 

algorithms were simulated from the best computational model in our full version social learning 354 

task (Zhang and Gläscher, 2020). To better maintain participants’ attention and ecological validity, 355 

we used human faces to indicate the computer algorithms during the experimental presentation.  356 

 357 
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The task consisted of 3 phases for every trial. (i) Phase 1. Initial choice (Choice 1). Upon the 358 

presentation of two choice options using abstract fractals, participants were asked to make their 359 

1st choice (2800 ms). A yellow frame was then presented to highlight the chosen option. (ii) Phase 360 

2. Choice adjustment (Choice 2). When all four other choices were presented, participants were 361 

able to adjust their choices given the social information (2800 ms). The yellow frame was shifted 362 

accordingly to highlight the adjusted choice. (iii) Phase 3. Outcome delivery. Finally, the outcome 363 

was determined by participants’ 2nd choice (3000 ms plus a jittered inter-trial interval 2000 – 4000 364 

ms; Figure 1A). Outcomes of the other four players were also displayed. On each trial, the reward 365 

was assigned to only one choice option given the reward probability, whereas choosing the other 366 

option would lead to a punishment. The reward realization sequence (trial-by-trial complementary 367 

win and loss) was generated with a pseudo-random order. Three pairs of abstract fractals were 368 

used in the current study, with a fully counterbalanced assignment together with the stimulation 369 

sites. All participants were compensated with a base payment of 20 Euro plus the average reward 370 

they achieved across three sessions of the experiment. Finally, the experiment ended with an 371 

informal debriefing session. 372 

 373 

Behavioral data acquisition 374 

Stimulus presentation and response recording were accomplished with Matlab R2014b 375 

(www.mathworks.com) and Cogent2000 (www.vislab.ucl.ac.uk/cogent.php). Buttons of “V” and 376 

“B” on the keyboard corresponded to the left and right choice options, respectively. To avoid motor 377 

artifacts, the position of the two choices options was counterbalanced for all participants. 378 

 379 

Behavioral data analysis 380 

We tested the cTBS effects on participants’ choice adjustment after observing the social 381 

information (during Phase 3 of the task), by three key measurements: (1) choice switch probability, 382 

(2) response time (RT), and (3) choice accuracy. According to our previous finding, here, we were 383 

particularly interested in the stimulation effect on the interaction between the relative direction of 384 

the group (with vs. against) and group consensus (2:2, 3:1, and 4:0, view of each participant). 385 

Therefore, we computed the difference measurement between the “against” and “with” conditions 386 

at each group consensus level as the dependent variable of interest. Accordingly, we performed 3 387 

(cTBS sites: right TPJ, vertex, left TPJ) × 3 (group consensus: 2:2, 3:1, and 4:0) linear mixed 388 
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models (LMM), with stimulation sites and group consensus as fixed factors (with interaction) and 389 

random slopes (without interaction), and participants as random intercept: y ~ stimulation * 390 

consensus + (1 + stimulation + consensus | ID). This LMM structure was identical for the analyses 391 

of Choice 2’s switch probability, RT, and accuracy.  392 

All statistical tests were performed in R (v3.7.1; www.r-project.org). All repeated-measures 393 

LME models were analyzed with the “lme4” package and summarized with the “BruceR” package 394 

(https://github.com/psychbruce/bruceR). Results were considered statistically significant at the 395 

level p < 0.05. Multiple comparison correction was applied whenever appropriate.  396 

 397 

 398 

Computational modeling 399 

The computational modeling procedures are fully documented in our previous work (Zhang and 400 

Gläscher, 2020), and for the consideration of enhancing accessibility and reproducibility, we repeat 401 

the main points relevant to the current study herein. Note that, we deem that it is the best practice 402 

to deviate as little as possible from our previous modeling description.  403 

 404 

We constructed three categories of models: baseline non-social model (M1), social model (M2) 405 

with only social influence (before receiving the outcome), and social model (M3–M6) with both 406 

social influence and social learning (before receiving the outcome).  407 

 408 

In all models, Choice 1 was accounted for by the option values of option A and option B: 409 

, (1) 410 

where Vt indicated a two-element vector consisting of option values of A and B on trial t. Values 411 

were then converted into action probabilities using a Softmax function. On trial t, the action 412 

probability of choosing option A was defined as follows:  413 

. (2) 414 

For Choice 2, we modeled it as a “switch” (coded as 1) or a “stay” (coded as 0) with respect to 415 

Choice 1 using a logistic regression. On trial t, the probability of switching given the switch value 416 

was defined as follows:  417 
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,  (3) 418 

where  was the inverse logit linking function:  419 

.  (4) 420 

It is worth noting that, in model specifications of the action probability, we did not include the 421 

commonly used inverse Softmax temperature parameter τ (except M1). This was because we 422 

explicitly constructed the option values of Choice 1 and the switch value of Choice 2 in a design-423 

matrix fashion. Therefore, including the inverse Softmax temperature parameter would inevitably 424 

give rise to a multiplication term, which, as a consequence, would cause unidentifiable parameter 425 

estimation.  426 

In the simplest model (M1), a fictitious update Rescorla-Wagner model was used to model the 427 

Choice 1, as we have demonstrated that the fictitious update model outperformed the standard 428 

single update Rescorla-Wagner (Rescorla and Wagner, 1972) model  and Pearce-Hall (Pearce and 429 

Hall, 1980) model with dynamic learning rate. Here, both the chosen value and the unchosen value 430 

were updated, as in: 431 

, (5) 432 

where Rt was the outcome on trial t, and α (0 < α < 1) denoted the learning rate that accounted for 433 

the weight of reward prediction error in value update. A beta weight (βV; akin to the inverse 434 

temperature parameter) was multiplied with the values before being submitted to Eq. 2 with a 435 

Categorical distribution, as in: 436 

. (6) 437 

Because there was no social information in M1a, the switch value of Choice 2 was comprised 438 

merely of the value difference of Choice 1 and a switching bias (i.e., intercept):  439 

. (7) 440 

Choice 2 was then modeled with this switch value following a Bernoulli distribution:  441 

. (8) 442 

 443 
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M2 tested whether observing choices from the other players (i.e., social influence) contributed to 444 

the choice switching. As on top of M1, only the switch value of Choice 2 was modified:  445 

, (9) 446 

where Nagainst,t denoted the amount of dissenting social information relative to each participant’s 447 

Choice 1 on trial t.  448 

 449 

M3–M6 assessed whether participants learned from their social partners and whether they updated 450 

vicarious option values through social learning, by testing several competing hypotheses of how 451 

vicarious valuation contributed to Choice 1 on the following trial. Across M3–M6, the option 452 

values of Choice 1 was specified by a weighted combination between Vself updated via direct 453 

learning and Vother updated via social learning, and M3–M6 differed on the specification of Vother.  454 

, (10) 455 

where 456 

. (11) 457 

 458 

M3 tested whether individuals recruited a similar RL algorithm to their own when learning option 459 

values from observing others. As such, M3 assumed participants to update values “for” the others 460 

using the same fictitious update rule for themselves: 461 

, (12) 462 

where s denoted the index of the four other co-players. These option values from the four co-463 

players were then preference-weighted and summed to formulate Vother, as follows: 464 

. (13) 465 
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To ensure that the corresponding value-related parameters (βVself and βVother in Eq. 10) were 466 

comparable, Vother (across M3–M6) was further normalized to lie between −1 and 1 with the Φ(x) 467 

function defined in Eq. 4:  468 

. (14) 469 

 470 

One may argue that having four independent RL agents as in M3 was cognitively demanding. We, 471 

therefore, constructed three additional models (M4–M6) that employed simpler but distinct 472 

computations to update vicarious values via social learning. Now that M3 considered both choice 473 

and outcome to determine the action value, we asked if using either choice or outcome alone may 474 

perform as well as, or even better than, M3. That said, we constructed M4 that updated Vother using 475 

only the others’ action preference, M5 that considered the others’ current outcome, and M6 that 476 

tracked the others’ cumulative outcome, to resemble the value update via observational learning.  477 

 478 

In M4, other players’ action preference () is derived from the choice history over the last three 479 

trials (from T-2 to T) using the cumulative distribution function of the beta distribution at the value 480 

of 0.5 (I0.5). That is:  481 

, (15) 482 

To illustrate, if one co-player chose option A twice and option B once, the action preference of 483 

choosing A for him/her was: I0.5(frequency of B + 1, frequency of A + 1) = I0.5(0.5, 1 + 1, 2 + 1) 484 

= 0.6875. Vother was computed based on these action preferences: 485 

. (16) 486 

 487 

By contrast, M5 tested whether participants updated Vother using only each other’s reward on the 488 

current trial, which was equivalent to the standard Rescorla-Wagner model with α = 1, indicating 489 

no trial-by-trial learning: 490 
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, (17) 491 

where KA denoted the number of other players who decided on option A on trial t.  492 

 493 

Lastly, M6 assessed whether participants tracked cumulated reward histories over the last few 494 

trials instead of monitoring only the most recent outcome of the others, with a discounted reward 495 

history over the last three trials: 496 

, (18) 497 

where γ (0 < γ < 1) denoted the rate of exponential decay, all other notions were as in Eq. 17.  498 

 499 

Model estimation with hierarchical Bayesian analysis 500 

Model estimations of all candidate models were performed with hierarchical Bayesian analysis 501 

(HBA; Gelman et al., 2013) using a newly developed statistical computing language Stan 502 

(Carpenter et al., 2017) in R, following the implementation in the “hBayesDM” package (Ahn et 503 

al., 2013). Stan utilizes a Hamiltonian Monte Carlo (HMC; and efficient Markov Chain Monte 504 

Carlo, MCMC) sampling scheme to perform full Bayesian inference and obtain the actual posterior 505 

distribution. We additionally implemented effect coding to account inter-dependencies in within-506 

subject experimental design. Let s,c denote a generic individual-level parameter of participant s 507 

in stimulation site c. s,c was drawn from a group-level multivariate normal distribution: 508 

. (19) 509 

Here, μ was a three-element vector (1: vertex, 2: right TPJ, 3: left TPJ) of group-level means, 510 

where μ2, and μ3 were effect-coded as the difference with respect to μ1: 511 

 (20) 512 
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Σ was a variance-covariance matrix denoting the group-level multivariate standard deviation, and 513 

it could be decomposed with the corresponding correlation matrix Ω of correlation coefficients r:  514 

, (21) 515 

where,  516 

. (22) 517 

And lastly, the correlation matrix was reparameterized by Cholesky decomposition factor, noted 518 

as two triangular matrices (LL’). All these group-level parameters were specified with weakly-519 

informative priors (Gelman et al., 2013): μ  ~ Normal (0, 1), Σ.~ half-Cauchy (0, 3), and L ~ 520 

LJK (2). All parameters were unconstrained except for α and γ (both [0 1] constraint, with inverse 521 

probit transform). We fit each candidate model with four independent MCMC chains using 1000 522 

iterations after 1000 iterations for the initial algorithm warmup per chain, which resulted in 4000 523 

valid posterior samples. The convergence of the MCMC chains was assessed both visually (from 524 

the trace plot) and through the Gelman-Rubin R̂ Statistics (Gelman and Rubin, 1992). R̂ values of 525 

all parameters were close to 1.0 (at most smaller than 1.05 in the current study), which indicated 526 

adequate convergence.  527 

 528 

For model comparison, we computed the Leave-One-Out information criterion (LOOIC) score per 529 

candidate model (Vehtari et al., 2016). The LOOIC score provides the point-wise estimate (using 530 

the entire posterior distribution) of out-of-sample predictive accuracy in a fully Bayesian way, 531 

which is more reliable compared to point-estimate information criterion (e.g., Akaike information 532 

criterion, AIC). We additionally performed Bayesian model averaging (BMA) with Bayesian 533 

bootstrap (Yao et al., 2018) to compute the probability of each candidate model being the best 534 

model.  535 

 536 

SUPPLEMENTARY INFORMATION: 537 

Supplemental Information includes 3 tables can be found with this article at http://xxxx. 538 
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