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Title 32 
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Abstract 35 

Large Language Models (LLMs) have significantly shaped working practices across a variety of fields 36 
including academia. Demonstrating a remarkable versatility, these models can generate responses 37 
to prompts with information in the form of text, documents, and images, show ability to summarise 38 
documents, perform literature searches, and even more, understand human behaviours. However, 39 
despite providing many clear benefits, barriers remain towards their integration into academic work. 40 
Ethical and practical concerns regarding their suitability for various tasks further complicate their 41 
appropriate use. Here, we summarise recent literature assessing the capacity of LLMs for different 42 
components of academic research and teaching, focusing on three key areas in the psychological 43 
sciences: education and assessment, academic writing, and simulating human behaviour. We discuss 44 
how LLMs can be used to aid each area, describe current challenges and good practices, and 45 
propose future directions. In doing so, we aim to increase the awareness and proper use of LLMs in 46 
various components of academic work, which will only feature more heavily over time. 47 
 48 
Keywords: large language models (LLMs), academia, psychology, education, human behaviour, 49 
teaching 50 

Introduction 51 

Academics are expected to carry out teaching and research duties, having both a commitment to 52 
lecturing and grading student work, as well as designing and performing experiments, writing 53 
grant/funding applications, and publishing papers. This workload is often excessive, leading to long 54 
working hours and feelings of heightened anxiety and inefficiency (Barrett & Barrett, 2008). These 55 
burdens may be potentially alleviated by the recently developed large language models (LLMs; 56 
Vaswani et al., 2017). LLMs, a specific type of artificial neural networks that are pretrained on 57 
statistical relationships in language that ultimately generate a list of outcomes probabilistically 58 
representing the most suitable option in response to a given prompt (e.g., "Explain XYZ to first-year 59 
undergraduate students, are particularly suitable for specific tasks such as text summarization, 60 
knowledge retrieval, and cases where information can be concisely and accurately presented. 61 
Subsequently, these models can aid various components of academic work (Meyer et al., 2023), 62 
including in the psychological sciences (Abdurahman et al., 2023; Demszky et al., 2023), by 63 
summarising and revising text (Bekker, 2023), analysing and debugging computer code (Surameery 64 
& Shakor, 2023; Tian et al., 2023), and performing literature searches (Haman & Školník, 2023; 65 
Khraisha et al., 2024). 66 
 67 
Teaching and academic writing are activities which particularly stand to benefit from the 68 
incorporation of LLMs, given that tasks in the psychological sciences heavily rely on text, verbal or 69 
written alike. Academics can use LLMs to freely generate content-relevant material (e.g., numerical 70 
cognition in infancy) and automate the grading of assessments, whilst students benefit from LLMs’ 71 
utility as a knowledge base and ability to assist learning of practical skills including statistics and 72 
programming (e.g., general linear modelling in R; Wang et al., 2024). Similarly, LLMs also have 73 
significantly altered the writing process for academics, with its ability to propose templated articles, 74 
revise and re-word text, and perform literature searches in response to specific queries (Pinzolits, 75 
2024). However, questions remain regarding their implementation for certain tasks, as LLMs often 76 
generate false information in response to specific prompts (Zhang et al., 2023) and false references 77 
when performing literature searches (Agrawal et al., 2024; Gao et al., 2023). Furthermore, students 78 
and academics, whilst benefitting from increased productivity, conversely face issues relating to 79 
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plagiarism (Hutson, 2024), critical thinking (Messeri & Crockett, 2024), and hinderances to the 80 
learning process (Yan et al., 2023). 81 
 82 
Inherently rooted in the psychological sciences (particularly cognitive psychology), a common 83 
benchmark for understanding the capability of LLMs involves measuring the response to cognitive 84 
tasks and logic puzzles requiring ‘human-like’ reasoning (Huang & Chang, 2023). Early success in this 85 
domain (Kojima et al., 2022; Wei et al., 2022) prompted research towards using LLMs as proxies for 86 
human participants in behavioural experiments, potentially offering the ability to perform complex 87 
cognitive tasks more quickly, reliably and cheaply. Responding to behavioural tasks and other 88 
assessments submitted as prompts, LLMs are found to replicate classic economic, psycholinguistic, 89 
and social psychology experiments (Aher et al., 2023), ultimately demonstrating similarities with 90 
human cognition and behaviour (Agnew et al., 2024; Huijzer & Hill, 2023; Ke et al., 2024). However, 91 
others have noted the various biases inherent with LLMs, including differences between other 92 
measures of human decision-making and inference (Crockett & Messeri, 2023), and the inability to 93 
reflect more current or constantly changing societal views (Harding et al., 2023). It therefore 94 
currently remains unclear for academics in the psychological sciences to which extent LLMs can 95 
accurately represent human cognition, and the circumstances where they can accurately provide a 96 
substitution for human participants. 97 
 98 
To reflect the state-of-the-art, this review summarizes the current development of research on LLMs 99 
in teaching, academic writing, and simulating human behaviour, in which we highlight the potential 100 
benefits and limitations for each. We then discuss the ethical considerations they present and 101 
suggest future directions in this rapidly evolving field. 102 

Large language models in academic education  103 

Psychology and related courses within higher education involve both theoretical and practical 104 
learning. Academics conceive and deliver concepts, theories, and empirical evidence for key topics in 105 
psychology, whereas students are expected to learn and portray critical insight towards those 106 
theories, and develop practical skills including statistics, experimental design, and programming. The 107 
underlying structure of LLMs make them highly suitable for aiding both theoretical and practical 108 
modes of learning, offering a clear benefit to both academics and students alike (Figure 1). Whilst 109 
the benefit for students is more apparent, teaching, at and above the undergraduate level, covers 110 
extensive amounts of conceptual information. As certain topics may initially be unfamiliar to the 111 
lecturer who will need to refresh their own subject knowledge, LLMs summarise complex topics at 112 
an appropriate level relevant for their teaching. LLMs can also be used to plan entire modules and 113 
how the content is delivered (Herft, 2023) by creating quizzes and assessments that test students' 114 
understanding of the material throughout the entire semester. This includes generating specific 115 
learning materials for those with learning difficulties (e.g., creating Concept Maps from 116 
conversations for dyslexic students) (D’Urso & Sciarrone, 2024) and translating materials into 117 
different languages for those whose primary language is not English (Lo, 2023). These elements are 118 
getting increasingly important considering equality, diversity, and inclusion in higher education 119 
(Prince & Francis, 2023). Ultimately, LLMs employed through chatbots such as ChatGPT benefit the 120 
teaching and learning process for both students and academics (Kasneci et al., 2023), improving 121 
student performance, motivation, organization and time management, and promotes a more 122 
effective and collaborative learning environment (Montenegro-Rueda et al., 2023; Yan et al., 2023).  123 



 4 

 124 
Figure 1. How academics and students can benefit from large language models (LLMs) in higher 125 
education. Demonstrating their versatility, large language models offer many benefits for both 126 
academics and students, most commonly by providing a knowledge base for key theories and 127 
concepts, and as a programming assistant. For students, LLMs can also assist with the revision 128 
process and at various stages of written coursework. Teachers can additionally benefit by using LLMs 129 
to plan courses and as an exam grader. Icons by Icons8. 130 
 131 
From the students’ perspective, LLMs can further benefit learning by generating educational 132 
materials such as reading comprehension tasks, interactive code explanations (Nam et al., 2024) and 133 
assessment questions (Shravya Bhat et al., 2022), and by improving student-based feedback of 134 
another’s work (Jia et al., 2021). However, whether LLMs generally lead to an improvement in 135 
academic performance cannot be definitively stated, as there currently is a lack of empirically 136 
designed studies, particularly within the context of higher education (Kurtz et al., 2024).  137 
 138 
The extent to which LLMs can bolster education is also dependent on the user’s technical ability and 139 
personal attitudes. Certain academics report being reluctant to include LLMs as part of the learning 140 
process due to ethical concerns or unfamiliarity (Kiryakova & Angelova, 2023). Indeed, teachers in 141 
higher education also report confusion with adopting their curriculum accordingly given the 142 
prevalence of LLMs (Zhou et al., 2024). Conversely, many students also do not employ LLMs in their 143 
own learning, and if so, are not fully aware of its subtle nuances. Students new to programming – a 144 
common scenario in the psychological sciences - whilst aware that ChatGPT and other LLM-chatbots 145 
can be used to generate and fix code provided as prompts, may be under-educated in prompt 146 
engineering (Lin, 2024), the specific construction of prompts to receive a more suitable response 147 
(Avila-Chauvet et al., 2023). This is an important skill, as ChatGPT tends to be less capable in 148 
providing responses to programming questions if not well prompted (Kabir et al., 2023).  149 
 150 
However, some have argued that an over-reliance on LLMs will have a negative influence on the 151 
skills and working practices accrued by students (Anders, 2023; Milano et al., 2023). Indeed, when 152 
using LLM tools to complete a programming project, students demonstrate practical progress but 153 
report hindered learning (Tanay et al., 2024), and a negative correlation has been observed between 154 
LLM reliance for programming tasks and performance on critical thinking assessments (Jošt et al., 155 
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2024). By over-relying on the LLM to provide the solution, students may not think practically about 156 
the specific components of the code, resorting to simply copying and pasting generated code ad 157 
nauseum. We therefore suggest that students use LLMs in programming tasks (and similar tasks) in a 158 
scaffolding fashion – utilizing structures and pointers generated by LLMs as an “extra brain” yet 159 
independently evaluating and internalizing the actual solution, akin to the concept of zone of 160 
proximal development in development psychology (Vygotsky, 2012). 161 
 162 
Yet, the lines regarding the appropriate use of LLMs in certain areas of education remain blurred. For 163 
example, in a programming class, should students be allowed to use code directly generated by an 164 
LLM? As employees are not restricted in the materials and resources available in their profession, 165 
some argue that universities should instead embrace LLMs and assess the efficacy in which students 166 
can use them to retrieve information and generate solutions (Koplin et al., 2023). Fully educating 167 
students on when (and when not) to use LLMs as part of their degree should therefore constitute a 168 
critical part of university-level education, avoiding the potential for an “unfair academic playing 169 
field”, created by students unaware of the full capabilities of AI tools (Cotton et al., 2023), or those 170 
who choose not to use it due to ethical considerations (Grassini, 2023). In fact, a substantial number 171 
of universities worldwide have published student guidelines and guidance on using LLMs and 172 
generative artificial intelligence tools1. Meanwhile, online tools and platforms are publicly available 173 
(e.g., ChatGPT Detector, GPTZero) to detect work generated by LLMs to avoid overuse and misuse of 174 
LLMs in higher education.  175 
 176 
Understanding the capabilities of LLMs also allows for academics, lecturers, and module convenors 177 
to set the appropriate examinations and assessments for their class. As these aim to measure 178 
subject knowledge, practical skills and critical thinking, abilities which can be replicated by LLMs to a 179 
degree, certain assessments in the psychological sciences may also need to be adjusted (Cotton et 180 
al., 2023; Rudolph et al., 2023). Attempts to prevent the use of LLMs for aiding assessments include 181 
employing AI-detectors for essays and reverting to oral presentations (Lemasters & Hurshman, 182 
2024) and in-person written examinations. However, with the proven benefit in improving the 183 
learning process for certain areas, academics should remain open with students using LLMs in 184 
specific cases where the benefits in productivity can, but do not necessarily lead to, reduced 185 
learning. We ultimately advocate that academics are educated, well informed and develop a clear 186 
agenda before employing LLMs as a practical tool in their teaching. 187 

Using large language models to aid academic writing  188 

One of the more controversial issues regarding the use of LLMs within academia is their role with 189 
aiding the writing process. As LLMs can summarise, generate, and re-phrase text, journals have been 190 
quick to demonstrate their position on the matter, with some disallowing any LLM-generated text, 191 
and others requiring clear guidance as to which components of the research paper were influenced 192 
or generated (Curtis, 2023). Discerning to which extent LLMs should be used presents a difficult 193 
situation. Most would agree that entire paragraphs should not be written, re-written or paraphrased 194 
by LLMs; however, if, hypothetically, a human writer re-phrased a paragraph of academic text that 195 
coincidentally matched word-for-word an LLM-rephrased paragraph of the same text, should neither 196 
be used? Ethical dilemmas also exist on a smaller scale as the writing process naturally involves the 197 
repetition of others’ work (this is particularly true for Methods sections in journal articles). Given 198 
that summarising the key results of a paper in a sentence or two can only contain a specific set of 199 
words, should LLMs be used to re-format a single sentence to avoid plagiarism? Some consider the 200 

 

1 One of the example guidance is from the authors’ affiliation: University of Birmingham (UK)’s Student 

guidance on using Generative Artificial Intelligence tools ethically for study. [retrieved on 09 July 2024]. 
https://intranet.birmingham.ac.uk/as/libraryservices/asc/student-guidance-gai.aspx 
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use of such programs even to re-structure single sentences as unacceptable in scientific research 201 
(Salvagno et al., 2023).  202 
 203 
In a related but separate scenario, LLMs are often used to generate text intended for a research 204 
article or review paper from scratch by providing descriptions of scientific principles or an overview 205 
of a research topic. However, the underlying architecture of LLMs cautions against both uses. 206 
Answers provided by LLMs in response to open scientific questions can often be incorrect, or 207 
irrelevant (Hosseini et al., 2023), necessitating factual checking from the human user, whilst using 208 
LLMs to summarise research produces fabricated references (Day, 2023; Giray, 2023; Gravel et al., 209 
2023), factually incorrect information (Han et al., 2023), and may be limited towards application and 210 
interpretation questions (Fergus et al., 2023). These false references may be entirely made-up, or 211 
legitimate articles with errors (Bhattacharyya et al., 2023), making it difficult for researchers to 212 
distinguish between the legitimate and illegitimate. Furthermore, using LLMs to summarise research 213 
areas has been found to generate inaccuracies compared to the published original work (Semrl et 214 
al., 2023). Paradoxically, however, the same study also demonstrated an ability to generate 215 
conclusions from provided abstracts indistinguishable from human-generated summaries, 216 
demonstrating an efficacy towards specific uses.  217 
 218 
More recently, the performance of LLMs towards summarizing literature has improved due to the 219 
development of advanced models with larger training sets. Advanced and specialized search engines 220 
primarily implementing GPT-4 (e.g., SciSpace) can highlight relevant papers with fewer hallucinations 221 
and false references than earlier models. Whilst promising, these tools are still in their infancy and 222 
face several challenges, including hallucination and relevancy of papers to the prompt (Bolanos et 223 
al., 2024). One strategy is to restrict LLMs to aiding specific components of the literature review. For 224 
example, ChatGPT is able to generate research questions, suggest research terms and performs well 225 
in filtering and categorizing articles (Alshami et al., 2023), demonstrating that LLMs can rival human 226 
performance for certain review tasks including title/abstract screening, full-text review and data 227 
extraction (Khraisha et al., 2024). A hybrid model where LLMs identify relevant papers and themes, 228 
followed by the human-centered screening of relevant material, presents one such approach (Ye et 229 
al., 2024), both reducing errors and improving the accuracy of the literature review compared to a 230 
human-only workflow. Similar hybrid frameworks have been proposed for identifying elements in 231 
empirical papers, where LLMs present a time- and cost-effective approach whilst maintaining the 232 
accuracy observed in human reviewers (Uittenhove et al., 2024). 233 
 234 
The versatility and extensive knowledge associated with LLMs stem from extensive pretraining on a 235 
wide, diverse corpus, the model subsequently acquiring a foundational grasp of both language and 236 
knowledge. Consequently, LLMs, including models trained upon enormous volumes of data, are still 237 
commonly not able to provide the domain-specific accuracy and precision in the information 238 
retrieved often essential for literature reviews (Susnjak et al., 2024). The accuracy of literature 239 
summarization for academic writing may therefore be improved by training LLMs on specific 240 
additional data, expanding the generalist knowledge with narrower domain-specific expertise. 241 
Whilst these “domain-specific” LLMs exist for a range of scientific disciplines, they are commonly 242 
associated with the medical sciences (Thirunavukarasu et al., 2023), potentially stemming from the 243 
high demand to summarise medical and biological information accurately and concisely for patient 244 
diagnoses and management. LLMs within this specific field are therefore specifically trained on large 245 
amounts of medical text. Reflecting a general trend of improvement in this space, performance on 246 
PubMedQA (Jin et al., 2019) a biomedical question answering dataset collated from PubMed 247 
abstracts, has improved over time with newer domain-specific models (Kamble & Alshikh, 2023; 248 
Singhal et al., 2023) displaying accuracies higher than base GPT-4 (Nori et al., 2023). Domain-specific 249 
LLMs vary in their subject expertise, from the broad topic of natural science (Xie et al., 2023), to 250 
niche areas including battery science (Zhao et al., 2024), and can be fine-tuned towards any scientific 251 
discipline. Certain workflows within this space also incorporate Retrieval-Augmented Generation 252 
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(RAG) (Lewis et al., 2021), which enhance the generation process by retrieving and incorporating 253 
relevant information associated with the user’s input (Li et al., 2024), including relevant papers or 254 
keywords (Agarwal et al., 2024). Despite this, LLMs, whilst surpassing human capacity in certain 255 
components of the review process often lack the analytical depth and attention to detail that 256 
characterize human reviews (Tsai et al., 2024).  257 
 258 
Using LLMs for proof-reading, editing, and shortening original text generated by the user are 259 
generally less contested within academia, as this occurs at the end of the creative process and leads 260 
to only minor changes from the original text. Some have likened this particular use of LLMs akin to 261 
asking a friend or colleague to proof-read a writing sample, which is unlikely to raise ethical concerns 262 
such as plagiarism that may arise under text summarization and generation (Meyer et al., 2023). 263 
Whilst early models were only able to process prompts in the form of text, more recently developed 264 
models can process entire documents, providing feedback on manuscripts within the order of 265 
seconds. Indeed, authors when presented with LLM-generated feedback on their published articles, 266 
find it helpful and more beneficial than feedback from some human reviewers (Liang et al., 2023). 267 
However, base models such as GPT-4 have been criticized for producing generic, non-meaningful 268 
comments, leading for tailored frameworks to be developed. Such frameworks typically levy 269 
multiple LLMs, assigning each LLM a specific task ultimately providing more meaningful and specific 270 
comments than the conventional single-model approach (D’Arcy et al., 2024; Gao et al., 2023). In 271 
any case, the accessibility of proof-reading and editing services through LLMs can additionally 272 
provide high-quality English language to non-native speakers and early-career researchers who 273 
would otherwise be placed at a disadvantage when submitting publications (Semrl et al., 2023). 274 
Indeed, in certain aspects, ChatGPT has proven to be more beneficial when compared to a paid 275 
English-editing service for academic editing (Kim, 2023). Proof-reading in the academic sphere can 276 
also be implemented to facilitate grant writing (Meyer et al., 2023) and to aid peer review (Hosseini 277 
& Horbach, 2023; Liu & Shah, 2023), allowing academics to focus more on new research (van Dis et 278 
al., 2023).  279 
 280 
LLMs, whilst able to summarise and generate text as part of the academic writing process, currently 281 
demonstrate limitations in accuracy and legitimacy in certain domains, benefitting understanding 282 
and text analysis tasks more compared to literature review tasks ( Wang et al., 2024). Therefore, 283 
whilst LLMs are able to rapidly generate a rapid, general overview of a subject, they currently fall 284 
short of being able to generate a literature review of the standards required in academia 285 
(Zimmermann et al., 2024). Assigning certain components of the workflow (e.g., identifying relevant 286 
papers) to LLMs can present a more time-effective approach whilst maintaining accuracy. Similar to 287 
other uses, benchmarking performance specific to searching and summarising scientific literature 288 
(Cai et al., 2024) is key for identifying their strengths and limitations within this space and supports 289 
the ongoing development of LLM workflows in scientific literature analysis. 290 

Simulating human participants with large language models 291 

Multiple fields of research including psychology, sociology, economics, and neuroscience utilise 292 
experiments to assess behaviours as part of their research methodology repertoire. However, 293 
despite its importance and usefulness, this process has several challenges and potential limitations, 294 
including high financial costs and data quality concerns (Chandler et al., 2014). Furthermore, human 295 
participants testing is also slowed by usually time-consuming ethical and practical components of 296 
the research process, requiring informed consent from participants, ethical approval, and additional 297 
requirements necessary for studying vulnerable groups. Some of the limitations and challenges 298 
associated with running behavioural experiments may therefore be avoided by employing artificial 299 
agents, with LLMs substituting for human participants.  300 
 301 
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Before diving into how LLMs can be useful in understanding human cognition, it is, first of all, 302 
important to unpack what “ability” is entailed in LLMs. One of the original motivations of developing 303 
LLMs and/or generative AI was to develop machines that could “think like humans” (Lake et al., 304 
2017). The capacity of LLMs to do so stems from the numerous computational properties that allow 305 
these models to mimic and imitate human reasoning and inference (Aher et al., 2023). Certain 306 
models are further able to exhibit complex behaviour consistent with mentalistic inference (Strachan 307 
et al., 2024) and demonstrate similar heuristics and context-sensitive responses akin to loss aversion 308 
and effort reduction that are commonly observed in humans (Suri et al., 2024). LLMs are also more 309 
likely to succeed in some tasks and fail other tasks, just as human participants do (Dasgupta et al., 310 
2023), leading for some researchers to state that the particular model tested could “pass as a valid 311 
subject” for some experiments (Binz & Schulz, 2023b). The appropriability for LLMs to do so is also 312 
improving over time, as important differences with human-like reasoning are prevalent in older 313 
models but disappear almost entirely in more recent ones (Yax et al., 2024), including a theory-of-314 
mind (Strachan et al., 2024; Trott et al., 2023), demonstrating the importance of model size and 315 
complexity that could match the richness of human behaviours. Certain LLMs also demonstrate zero-316 
shot learning (or generalisation), the ability to infer on data that the model have never seen in 317 
training, by accurately simulating human responses towards previously unseen cognitive tasks (Binz 318 
& Schulz, 2023a). Future research may seek to train LLMs on additional tasks, and novel tasks may 319 
eventually be tested on simulated cohorts, reducing time and financial costs in developing 320 
behavioural studies. 321 
 322 
LLMs can also be experimentally induced into specific behavioural states through prompt 323 
engineering. For example, prompting LLMs with positive or negative components (e.g., adding the 324 
suffix ‘This is very important to my career’ or ‘Perhaps this task is just beyond your skill set’) has 325 
been found to affect the response generated (Li et al., 2023; X. Wang et al., 2024). This approach has 326 
subsequently been applied to understand psychopathology by inducing behavioural states observed 327 
among human cohorts with mental health conditions. By experimentally manipulating the level of 328 
‘anxiety’ through anxiety-inducing and happiness-inducing scenarios, GPT-3.5 recreates performance 329 
characteristics observed in humans with high anxiety during a simple multi-armed bandit task, 330 
engaging in less exploitation and more exploration, and ultimately leading to worse behaviour 331 
(Coda-Forno et al., 2023). This and similar results have far-reaching implications for validating 332 
diagnostic measures and determining the efficacy of cognitive therapies, potentially in combination 333 
with computational and neuroimaging data of mental health conditions (Sohail & Zhang, 2024). 334 
Indeed, mindful-based interventions have been shown to reduce high levels of anxiety 335 
experimentally induced through traumatic narratives (Ben-Zion et al., 2024). As engineering 336 
positively themed prompts to LLMs shares similarities with delivering cognitive-based therapies in 337 
humans, prompts can be firstly fine-tuned in LLMs, with winning prompts subsequently tested in 338 
human patients. Early research has implemented such an LLM-informed treatment approach by 339 
generating dialogue systems based on Cognitive Behavioural Therapy (CBT) scenarios. Subsequently, 340 
patients report improved mood change and empathy to prompts generated by GPT-4, with no 341 
improvements to those generated by a dialogue model (Izumi et al., 2024).  342 
 343 
Future studies could further utilize the same framework (i.e., first establish protocols in LLMs, then 344 
test it in humans) to investigate developmental psychopathology. Large language models display a 345 
pattern of increasing cognitive ability and rising language complexity in correspondence with child 346 
development, if prompted to do so (Milička et al., 2024). However, in the same study, task type, 347 
prompt type, and the choice of language model were all found to influence developmental patterns, 348 
demonstrating variability with this approach. Whilst LLMs offer a novel framework towards 349 
understanding human development, cognitive processes arising during childhood such as conceptual 350 
abstraction, should ideally be assessed using different tasks, and at multiple time points (Frank, 351 
2023). Altogether, this recent and exciting field reflects similarities in computation between humans 352 
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and machines, with the potential for a computational psychiatric approach (Schulz & Dayan, 2020), 353 
informed by large language models.  354 
 355 
Whilst LLMs can - in principle – be used as proxies for human participants, some have advised that 356 
this should only be done “when studying specific topics, when using specific tasks, at specific 357 
research stages, and when simulating specific samples” (Dillion et al., 2023), reflecting the 358 
differences in cognition and behaviour observed between humans and machines (Figure 2.). Albeit 359 
the important insights LLMs can offer in simulating human behaviours, LLMs have been shown to 360 
perform differently to human participants in many cognitive tasks, such as those necessitating 361 
directed exploration and causal reasoning (Binz & Schulz, 2023b), and during finitely-repeated 362 
economic games (Akata et al., 2023). Further differences between LLM and human task performance 363 
are illuminated through the "correct answer" effect, where questions probing political orientation, 364 
economic preference, judgement, and moral philosophy are answered with zero or near-zero 365 
variation (Park et al., 2023), ruling out the substitution of LLMs as human participants for certain 366 
tasks.  367 
 368 
There are also questions into whether LLMs should be used at all in this manner concerning 369 
generalisability, as the training sets of LLMs are “HYPER-WEIRD”, overinfluenced by those from 370 
Western, Educated, Industrialized, Rich, Democratic (WEIRD) countries as well as those with 371 
attitudes that are Hegemonic, Young, and Publicly ExpRessed (Crockett & Messeri, 2023). 372 
Consequently, these models may lack sufficient diversity in their responses to accurately represent a 373 
representative population sample (Wang et al., 2024). ChatGPT, for example, demonstrates gender 374 
(Ghosh & Caliskan, 2023), cultural (Cao et al., 2023), and political (Hartmann et al., 2023) biases in its 375 
responses, and shows significantly less variance compared to human participants across a range of 376 
self-report measures spanning various psychological domains, such as personality, cognition, 377 
political orientation, and emotions (Atari et al., 2023). Indeed, GPT-4 has been described as having 378 
both increased honesty and humility and demonstrating masculine and anxious traits (Barua et al., 379 
2024). Substituting participants for LLMs could therefore propagate the over-sampling of a specific 380 
sub-population, the antithesis of psychological research which is often to obtain samples from and 381 
to make inferences towards diverse populations. In addition, LLMs also demonstrate – relative to 382 
human responses - increased susceptibility to biases such as irrationality (Alsagheer et al., 2024), and 383 
response inconsistency (Macmillan-Scott & Musolesi, 2024), and are influenced by unknowingly 384 
biased features of model inputs (Turpin et al., 2023), including language (Goli & Singh, 2024).   385 
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 386 
Figure 2. Considerations of employing large language models (LLMs) as proxies for human 387 
participants.  388 
(A) Models are trained upon large quantities of online data influenced by those with access to the 389 
internet, unrepresentative of the human population. (B) LLMs demonstrate several biases including 390 
cognitive, racial, gender and political inclinations in their responses to specific prompts. (C) In 391 
response to questions probing political orientation, economic preference, and moral philosophy, 392 
human cohorts demonstrate significant response variability whereas LLMs demonstrate near-zero 393 
variation, a phenomenon dubbed the ‘correct answer effect’. (D) Prompt engineering significantly 394 
influences the response provided by LLMs, whilst having little effect on human-based reasoning (Yax 395 
et al., 2024). Depicted is the ‘Chain-of-Thought’ prompt engineering strategy which improves LLM-396 
based reasoning by breaking down the response into discrete steps. Icons by Icons8. 397 
 398 
Despite these concerns, LLMs provide a tangible benefit as proxies for human participants for 399 
specific experimental designs not susceptible to cognitive or variational biases. Looking forward, this 400 
promising field should further identify the similarities and differences between LLMs and human 401 
behaviour by developing testable and ethologically meaningful benchmarks (Coda-Forno et al., 2024; 402 
Gandhi et al., 2023; Huang et al., 2024; Momennejad et al., 2023), frameworks guiding 403 
experimenters whether to integrate LLM-generated data into their research pipeline (Trott, 2024), 404 
and prompt datasets for mitigating against cognitive biases (Echterhoff et al., 2024). Furthermore, 405 
making publicly available articles, tutorials, and notebooks detailing how the lay-psychology 406 
researcher can substitute LLMs for human participants (Hussain et al., 2023) will make this often 407 
technically difficult research more accessible within the psychological sciences. It is worth noting 408 
several challenges towards future development in this vein. Developing benchmarks for social biases 409 
are often subjective and context-dependent, and are not detected by automated benchmarks and 410 
objective metrics such as accuracy (Aoyagui et al., 2024). Furthermore, the varying accuracy 411 
observed between different models and human responses with defining broad concepts has led for 412 
some to necessitate the definition of more specified cognitive measures (Almeida et al., 2024). In 413 
the face of these challenges, if appropriately used, LLMs have the potential to significantly change 414 
how academic experiments are conducted (Huijzer & Hill, 2023). 415 
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Conclusion 416 

LLMs contest a highly debated area of academic research including the psychological sciences. 417 
Whilst it is not quite the ‘academic panacea’ (Quintans-Júnior et al., 2023) some have made it to be, 418 
LLMs constitute an integral part of the academic workflow for an increasing number. Academics 419 
currently use LLMs to write essays and talks, summarize literature, draft and improve papers, 420 
identify research gaps, write computer code and perform statistical analyses. As time progresses, 421 
this capability will only increase, evolving to the point that LLMs are expected to design experiments, 422 
write and complete manuscripts, conduct peer review and support editorial decisions to accept or 423 
reject manuscripts. Furthermore, domain-specific LLMs will further increase academic performance 424 
and productivity within specific fields. For those with little experience, a progressive adoption 425 
model, where LLMs are gradually incorporated into academic work (Kurtz et al., 2024) is 426 
recommended. Whilst managing a balance between efficiency and legitimacy of both teaching and 427 
research will be a difficult challenge, we nevertheless advocate for LLMs to be openly endorsed by 428 
academics in psychology and beyond.  429 
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