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ABSTRACT

To identify the relationship between load and the number of repetitions performed to momentary
failure in the pin press exercise, the present study compared different statistical model types and
structures using a Bayesian approach. Thirty resistance-trained men and women were tested on
two separate occasions. During the first visit, participants underwent assessment of their one-
repetition maximum (1-RM) in the pin press exercise. On the second visit, they performed sets
to momentary failure at 90%, 80% and 70% of their 1-RM in a fixed order during a single
session. The relationship between relative load and repetitions performed to failure was fitted
using linear regression, exponential regression and the critical load model. Each model was
fitted according to the Bayesian framework in two ways: using an across-subjects pooled data
structure and using a multilevel structure. Models were compared based on the variance
explained (R?) and leave-one-out cross-validation information criterion (LOOIC). Multilevel
models, which incorporate higher-level commonalities into individual relationships,
demonstrated a substantially better fit (R*: 0.97-0.98) and better predictive accuracy compared
to generalised pooled-data models (R* 0.89-0.93). The multilevel 2-parameter exponential
regression emerged as the best representation of data in terms of model fit, predictive accuracy
and model simplicity. The relationship between load and repetitions performed to failure
follows an individually expressed exponential trend in the pin press exercise. To accurately
predict the load that is associated with a certain repetition maximum, the relationship should
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therefore be modelled on a subject-specific level.

1. Introduction

Modelling the relationship between exercise intensity
and the maximum amount of realisable physical work
has been an increasingly addressed objective in sports
science (Bergstrom, Dinyer, Succi, Voskuil, & Housh,
2021). In resistance training, this relationship has pre-
viously been characterised by the term “strength-endur-
ance continuum” (Campos et al., 2002) and can be
described for a given exercise by modelling the external
load as a function of the number of repetitions per-
formed to momentary failure (RTF) (e.g. Reynolds,
Gordon, & Robergs, 2006; Mayhew, Ball, Arnold, &
Bowen, 1992). Precise knowledge about the interrelation
between these two variables can be beneficial in various
ways. First, it would enable the comprehensive determi-
nation of a person’s exercise-specific physical fatigability
in dependence of the external load. In contrast to pre-
viously documented methods of assessing strength

endurance (Lawton, Cronin, & McGuigan, 2011), this
approach may vyield a descriptive indicator that is not
limited to a single load, but rather describes fatigue
resistance across a wide spectrum of loads (i.e. a
“strength-endurance profile”). Second, it would enable
the prediction of the maximum external load a person
can move in a given exercise for any given number of
repetitions. This involves the concept of estimating the
one-repetition maximum (1-RM) based on the RTF that
can be achieved at a submaximal load, which has been
frequently investigated over the past decades (Reynolds
et al., 2006; Mayhew et al., 1992; Braith, Graves, Leggett,
& Pollock, 1993; Brzycki, 1993; Mayhew, Johnson,
Lamonte, Lauber, & Kemmler, 2008; LeSuer, McCormick,
Mayhew, Wasserstein, & Arnold, 1997; Brechue &
Mayhew, 2009). Third, it would enable certain methods
of resistance training prescription, like the standardis-
ation of muscular exhaustion based on a predicted
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training maximum, a prescriptive approach which has
been referred to as “relative intensity of set-repetition
best” (Scott, Duthie, Thornton, & Dascombe, 2016;
Suchomel, Nimphius, Bellon, Hornsby, & Stone, 2021).
Previous studies that intended to model the relationship
between external load and RTF mainly focused on apply-
ing across-subject regressions by means of either linear
(Reynolds et al., 2006; Brzycki, 1993; Haff & Triplett,
2016; Adams & Beam, 2014) or exponential models (Rey-
nolds et al., 2006; Mayhew et al., 1992; Sakamoto & Sin-
clair, 2006; Desgorces, Berthelot, Dietrich, & Testa, 2010).
However, there is evidence suggesting that the
strength-endurance relationship may succumb to con-
siderable interindividual differences attributed to
numerous factors, such as specificity to the tested exer-
cise (Reynolds et al., 2006; Hoeger, Hopkins, Barette, &
Hale, 1990), movement cadence (Sakamoto & Sinclair,
2006; LaChance & Hortobagyi, 1994) as well as the ath-
letes’ training experience (Braith et al., 1993; Brechue &
Mayhew, 2009; Hoeger et al., 1990) and training back-
ground (Desgorces et al, 2010; Richens & Cleather,
2014). Considering these potential confounders, one
could argue that any statistical modelling approach
that generalises the relationship across different sub-
jects without accounting for subject heterogeneity (i.e.
“complete-pooling models”) may result in a suboptimal
representation of the strength-endurance relationship,
therefore impeding both the fit and predictive accuracy
of such models. Indeed, independent validation studies
predominantly reported noticeable inaccuracy of 1-RM
predictions based on complete-pooling models,
especially when using lower relative loads (Reynolds
et al, 2006; Mayhew et al,, 2008; LeSuer et al, 1997;
Brechue & Mayhew, 2009; Ware, Clemens, Mayhew, &
Johnston, 1995). Several researchers have sought to
overcome this issue and improve model validity by
transposing the concept of critical power (Burnley &
Jones, 2018) to dynamic resistance training (Bergstrom
et al, 2021; Morton, Redstone, & Laing, 2014). The so-
called critical load model, also referred to as critical lift

Table 1. Subject characteristics.
Male (n=19)

Female (n=11)

Age (y) 27.4£3.7 [21.2-33.6] 26.9 +5.2 [20.2-35.9]

Experience in BP (y) 7.6 +3.0 [3.0-15.0] 3.5+2.6 [1.0-10.0]

Height (cm) 180.9+5.4 [171.5-191.6] 163.1 5.1 [154.3-171.0]

Body mass (kg) 85.4+7.2 [69.2-96.9] 63.4+4.4 [55.2-69.7]

1-RM (kg) 112.2 £ 13.6 [85.0-142.5] 61.4 £ 10.0 [50.0-80.0]

Relative 1-RM (kgl?]  1.32+0.12[1.15-1.50]  0.98+0.19 [0.77-1.31]
kg™)

RTF at 90%1-RM (n)
RTF at 80%1-RM (n) 7.6 + 1.3 [5.0-10.0] 8.4+1.6 [6.0-11.0]
RTF at 70%1-RM (n)  12.1+2.4 [7.0-16.0] 13.1+2.1 [9.0-15.0]

Note: Data are presented as mean =+ SD [min — max]. BP: bench press; 1-RM:

one-repetition maximum in the pin press; RTF, repetitions performed to
momentary failure in the pin press.

43+0.9 [3.0-6.0] 43+ 1.3 [2.0-6.0]

or critical resistance model, introduced the idea of mod-
elling strength endurance on an individual level (i.e. “no-
pooling models”) rather than a group-level, therefore
treating the individual as the population of interest.
While this concept may provide a valuable alternative
for when data availability is limited, it should still be
treated with caution in scientific research, since it
implies a higher potential to overfit data (Gelman,
2006). A more promising solution may be expected by
applying a multilevel model (i.e. “mixed model”, also
called “hierarchical model” or “partial pooling model”)
to the strength-endurance relationship, including both,
group-level and subject-level parameters (Gelman,
2006). In particular, the use of Bayesian multilevel mod-
elling seems promising, as simulation research has
shown Bayesian parameter estimation to be more accu-
rate than maximum likelihood estimation in small
samples (Lee & Song, 2004). However, it has yet to be
evaluated whether a multilevel modelling approach
yields an advantage over the complete-pooling
approach that has been primarily applied in research
thus far. Furthermore, proposed models (linear
regression, exponential regression, and critical load
model) have yet to be compared among each other to
determine which one provides the most appropriate
representation of the strength-endurance relationship.
The present study was designed to address these two
issues using the example of the pin press exercise,
which can be considered a variant of the bench press,
in a resistance-trained population. Results will help to
improve understanding of the relationship between
load and RTF across a high-load range.

2. Materials and methods
2.1. Participants

Nineteen men and eleven women with previous experi-
ence in resistance training voluntarily participated in the
investigation. Descriptive characteristics of participants
are summarised in Table 1. Inclusion criteria were: (a)
being free of illness and injury, (b) being between 18
and 40 years of age, (c) having at least one year of
regular training experience in the bench press exercise
and (d) achieving a minimal relative 1-RM in the pin
press of 1x body mass (men) or 0.75x body mass
(women). Subjects were informed about benefits and
potential risks related to their participation, completed
a modified Physical Activity Readiness Questionnaire
and signed an informed consent form prior to under-
going any test. All procedures were implemented in
accordance with the ethical guidelines of the



Declaration of Helsinki and approved by a local ethical
review committee (no. 00461).

2.2. Experimental design

Participants attended the laboratory on two days, separ-
ated by approximately 48 h. On day 1, subjects were
assessed for body mass and height using a scale (Seca
Model 877; SECA GmbH & Co. KG., Hamburg, Germany)
and stadiometer (Seca Model 217, SECA GmbH&Co.
KG., Hamburg, Germany). Afterwards, they were famil-
iarised with the execution of the free-weight pin press
exercise and followed a progressive loading test to
determine their individual 1-RM. On day 2, participants
completed sets to momentary failure at submaximal
loads in descending order. Subjects were instructed to
refrain from strenuous exercise and alcohol 24 h
before tests and not to consume caffeine 6 h prior to
testing. The exercise was performed in a Competition
Combo Rack approved by the International Powerlifting
Federation using a 20-kg barbell and calibrated weight
plates (Eleiko, Halmstad, Sweden).

To provide participants a safe testing environment for
performing sets to momentary failure and to reduce
potential variability in RTF resulting from an inconsistent
use of the stretch-shortening cycle, the pin press was
executed according to the following movement specifi-
cations: in each repetition, subjects were required to
lower the barbell onto two safety pins adjusted to a
height that would allow for a distance between the bar-
bell’s lowest position and the participant’s chest of up to
3 ¢cm. Upon having the barbell come to rest on the safety
pins, a researcher would provide the command “Press!”,
ordering the subject to perform the concentric phase of
the movement at maximum intended velocity until
reaching full extension of their elbows. When multiple
repetitions were executed within a set performed to
momentary failure, participants were further instructed
to autonomously minimise the time holding the
barbell with extended elbows in between repetitions
in order to reach the point of momentary failure as
quickly as possible. Throughout each set, they had to
maintain their feet's position on the floor and keep
their hip, shoulders and head in contact with the
bench. A linear position transducer (GymAware Power
Tool, Kinetic Performance Technologies, Canberra, Aus-
tralia) was used to record mean concentric barbell vel-
ocity, to provide testers with feedback during the 1-RM
assessment and help selecting appropriate load incre-
ments. The accuracy of the device has been scientifically
validated before (Mitter et al., 2021) and its use for the
assessment of mean velocity has been reported to

EUROPEAN JOURNAL OF SPORT SCIENCE . 1205

provide good test-retest reliability (Dorrell, Moore,
Smith, & Gee, 2019; Orange et al., 2020).

2.3. One-repetition maximum assessment (day 1)

Participants followed a standardised general warm-up
including 5 min of stationary cycling (Kettler X1, Trisport,
Huenenberg, Switzerland) at a cadence of about 80 rpm
and a constant power output of T W per kg body mass.
Subsequently, they completed 2 min of unloaded
dynamic mobilisation exercises comprising circumduc-
tion of the shoulders, flexion and extension of the
elbows and circumduction of the wrists, followed by
10 repetitions of axial external rotation of the humerus
against light elastic resistance. In the next step, subjects
were required to estimate their 1-RM in the pin press,
considering the previously described specifications for
movement execution. A progressive loading scheme
was applied to slowly approach the true 1-RM, using
loads equivalent to 25%, 50%, 75%, 85% and 95% of
the estimated 1-RM. The number of repetitions per-
formed at each load and passive rest in between sets
were standardised according to an established autore-
gulatory procedure (Mitter et al, 2021; Sanchez-
Medina, Perez, & Gonzalez-Badillo, 2010) that bases set
configurations on the achieved barbell velocity of the
preceding set, which has been considered a good pre-
dictor of the actually applied relative load (Weakley
et al,, 2021). The rationale for employing this autoregu-
latory approach was to rudimentarily account for the
possibility of subjects under- or overestimating their 1-
RM and, consequently, being assigned an inadequate
combination of actual warm-up loads, repetition
numbers and rest periods that might result when assign-
ing fixed values to inaccurate subjective estimates. Par-
ticipants initially performed three repetitions with a
3 min break in between sets. Volume was adapted to
two repetitions accompanied by a 4 min break, once
mean velocity dropped below 1.0 m-s™', and further
reduced to a single repetition accompanied by 5 min
of rest, once mean velocity fell below 0.65 m-s~'. Rest
intervals were chosen corresponding to those reported
for highly reliable 1-RM test protocols (Grgic, Lazinica,
Schoenfeld, & Pedisic, 2020). After completing 95% of
their estimated 1-RM, load increments were selected
individually based on the participant’s subjective feed-
back and achieved mean barbell velocity. Larger individ-
ual load increments of 2.5-10 kg were selected as long
as the achieved mean concentric barbell velocity of
the preceding attempt was above 0.2 m:s™', which cor-
responds to recently reported norm values (mean +
one standard deviation) of the velocity achieved at the
1-RM in the bench press (Weakley et al., 2021). Small
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load increments of 2.5 kg were selected once mean con-
centric barbell velocity fell below 0.2 m-s™". The test was
terminated once a subject could no longer press an
assigned load across the full range of motion,
suggesting that the 1-RM had been reached. On
average, subjects required 2.5 + 1.4 attempts to deter-
mine their 1-RM and reached a velocity at 1-RM of
0.13+£0.04 m-s™".

2.4. Repetitions to failure assessment (day 2)

Participants were tested for the RTF in the pin press at
loads corresponding to 90%, 80% and 70% of the pre-
viously determined 1-RM. Each RTF test was initiated
by the same general warm-up applied for the 1-RM
assessment on day 1. Subsequently, subjects completed
three specific warm-up sets in the pin press, comprising
three repetitions at 25%, three repetitions at 50% and
two repetitions at 75% 1-RM. 3 min of rest were pro-
vided in between warm-up sets and 5 min of rest prior
to each test to momentary failure. A test to momentary
failure was terminated once the participant attempted
to complete the concentric phase of a current repetition,
but was unable to do so (Steele, Fisher, Giessing, &
Gentil, 2017). To increase efficiency of data acquisition
and, thus, limit participant drop out, the test protocol
for the RTF assessment was designed for implemen-
tation within a single visit. Therefore, two methodologi-
cal specifications were applied in order to minimise
negative effects of accumulating fatigue on the com-
pleted RTF. First, the sequence of tested loads was
fixed in a declining manner (i.e. set 1: 90%, set 2: 80%,
set 3: 70% 1-RM), as research suggests that fatigue is
more prevalent after sets performed to failure at
lighter loads compared to heavier loads (Sanchez-
Medina & Gonzélez-Badillo, 2011). Second, subjects
were granted a prolonged period of rest in between
sets to failure (de Salles et al., 2009). For this purpose,
each set to momentary failure was immediately followed
by 5 min of passive rest. After that, subjects completed
the general and specific warm-up described above in
order maintain positive warm-up effects. This yielded
an approximate 22 min in between sets to failure,
while applying the same preparatory measures before
each test.

2.5. Statistical modelling

The following four model types were used to quantify
the relationship between load (expressed as a percen-
tage of the 1-RM) as the dependent variable, and RTF

as the independent variable:

Lin: load ~ Normal (a + b - RTF, &?) )
Ex2: load ~ Normal (a - e®*, ¢?) (2
Ex3:load ~ Normal (c + a - e€®F™P, ¢?) (3)

Crit: load ~ Normal(L' /(RTF — k) + CL, ¢®)  (4)

The linear model (Lin, Equation (1)) describes the
relationship as a simple 2-parameter linear regression,
which has been assumed to be a convenient approxi-
mation at a high-load range (Reynolds et al., 2006;
Brzycki, 1993; Haff & Triplett, 2016; Adams & Beam,
2014). The model contains an additive intercept par-
ameter a and a slope coefficient b. The exponential
regression model (Ex2, Equation (2), and Ex3, Equation
(3)) describes a curvilinear relationship between vari-
ables. Previous research predominantly advocated expo-
nential models in the form of Equation (3), featuring a
multiplicative parameter a, an exponential curvature
parameter b and an additive parameter ¢ (Reynolds
et al., 2006; Mayhew et al., 1992; Sakamoto & Sinclair,
2006; Desgorces et al., 2010). However, we also included
Equation (2) as a simplified version of Equation (3) that
omits the additive parameter c (8). Ultimately, Equation
(2) can be rearranged to a simple linear regression
model by applying a natural log transformation to the
dependent variable, making the model easily comput-
able. Finally, the critical load model (Crit, Equation (4))
entails a hyperbolic relationship between the variables
(Bergstrom et al., 2021; Morton et al., 2014). The model
comprises a curvature parameter L’, a vertical asymptote
parameter k and a horizontal asymptote parameter CL.
Anillustrative description of model functions is provided
in Figure 1.

2.6. Model fitting

Each model type (Equations (1) to (4)) was fitted accord-
ing to two different model structures: first, a complete-
pooling model (CPM) was calculated, including all data
and containing only fixed effects, therefore not account-
ing for interindividual differences. Second, a multilevel
model (MLM) was calculated, which, in addition to
fixed effects, also added random effects for each
subject. This implies that for the multilevel models,
every subject-level parameter was fitted to the data of
a single participant, assuming a higher-level group distri-
bution of the respective parameter. For instance, it was
assumed that a generic subject-level parameter “x” was
drawn from a group-level normal distribution with the

mean “W,” and variance ”0)2(”, namely, x ~ Normal (y,
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a (intercept) Li n a (intercept) EX2
ln(i)
b (curvature) =
T i<}
© ©
ie) o
b (slope) = —
dx
X (repetitions to failure) X (repetitions to failure)
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k
| .
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|
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X (repetitions to failure)

Figure 1. lllustrative examples of the investigated model types and description of model parameters. Solid black lines display model
functions (extended slightly below 0); solid grey lines display the y-axis at x = 0; dashed grey lines display the vertical (k) and hori-
zontal asymptote (CL) of the critical load model; intercepts mark the intersection of the model function and the y-axis at x =0; Lin,
linear regression model; Ex2, exponential 2-parameter regression model; Ex3, exponential 3-parameter regression model; Crit, critical

load model.

op). The possibility of correlated parameter structures
within every multilevel model was accounted for by
introducing a covariance matrix for the respective
model’s subject-level parameters. Therefore, eight
different models were fitted that differed in model
type (Lin, Ex2, Ex3, Crit) and structure (CPM, MLM).

Data analysis was conducted following a Bayesian
approach, using the probabilistic programming
language Stan (Carpenter et al., 2017), version 2.21.0,
to estimate parameter distributions. Weakly informative
priors were selected for variance parameters and the
covariance matrix. Priors for the group-level parameters
(fixed effects) of each model were defined by moment-
matching a normal distribution to the posteriors of a
preceding pilot study done on a separate sample of
eight subjects. A prior sensitivity analysis was conducted
to identify an appropriate scaling factor that would miti-
gate the influence of priors on posterior distributions,
thus ensuring that pilot-derived priors were minimally

informative. Further details on the pilot sample, prior
selection and the sensitivity analysis are provided
online (Supplemental digital material 1). Furthermore,
sampling details and Stan codes are available online to
enhance analytical reproducibility (Supplemental
digital material 2).

2.7. Model evaluation

Models were compared in terms of model fit and model
predictive accuracy. The model fit was analyzed by cal-
culating a Bayesian R? distribution (Gelman, Goodrich,
Gabry, & Vehtari, 2019) and interpreted according to
the Maximum a Posteriori estimate (MAP) and the 90%
Highest Density Interval (HDI) (Makowski, Ben-Shachar,
& Liidecke, 2019). Differences between R? posterior dis-
tributions were analyzed and interpreted according to
their probability density overlap (NR?) and deemed “sub-
stantial” for NR? < 5%. Model predictive accuracy was
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evaluated by calculating the expected log predictive
density and converting it into a measure of deviance
labelled LOOIC (Vehtari, Gelman, & Gabry, 2017),
whereas smaller values of LOOIC indicate higher predic-
tive validity. Differences in LOOIC between models
(ALOOIC) were complemented with an estimated stan-
dard error of difference (SE) (Vehtari et al.,, 2017) and
considered to be substantial if they exceeded 4x the
SE. In cases of model comparisons not indicating sub-
stantial differences in model fit or predictive accuracy,
models were further evaluated according to their simpli-
city. Under respective circumstances, the logical prin-
ciple of Occam’s razor advocates that models with
fewer parameters should be considered as more
efficient. Posterior analysis was completed using R
version 4.0.5 and the R packages bayestestR and loo.

3. Results

In all cases, the multilevel model resulted in a substan-
tially better model fit compared to their complete-
pooling counterpart (NR? < 0.1% for all comparisons).
Ex3 provided the highest R> among complete-pooling
models, being substantially different from Lin (NR? <
0.1%), but not from Ex2 (NR*=6.5%) and Crit (NR*=
88.5%). The multilevel variant of Crit showed the best
overall model fit, albeit not being substantially
different from other multilevel models (nR*=13.6-
90.6%). Posterior distributions for R® are displayed in
Figure 2.

Every multilevel model further provided a substan-
tially higher predictive accuracy when compared to its
complete-pooling counterpart. Ex3 resulted in the
lowest LOOIC among complete-pooling models, indicat-
ing a substantial difference from Lin (ALOOIC £ SE =49.5
+9.5), but not from Ex2 (ALOOIC + SE =26.6 +7.0) and
Crit (ALOOIC = SE=1.9 +1.5). Across multilevel models,
Ex3 provided the highest predictive accuracy, although
LOOIC was not substantially different from Lin
(ALOOIC+SE=41.8+144), Ex2 (ALOOICtSE=27+
7.8) and Crit (ALOOIC + SE = 6.5 + 2.2). Overall, the multi-
level variant of Ex2 emerged the most efficient model
(Figure 3) due to its distinct similarity to the multilevel
variants of Ex3 and Crit in terms of model fit and predic-
tive accuracy, while relying on fewer parameters. Fur-
thermore, it yielded substantially better predictive
accuracy (ALOOIC+SE=39.0+7.4) compared to the
multilevel variant of Lin. Statistics for model evaluation
are summarised in Table 2.

Posterior distributions of group-level parameters
(fixed effects) and subject-level parameters (random
effects) calculated for the multilevel Ex2 model are dis-
played in Figure 4. Group-level parameters were

estimated at 102.76 (90% HDI=[102.24, 103.29]) for
the intercept a and at —0.032 (90% HDI=[-0.034,
—0.030]) for the curvature parameter b. Subject-level
parameters yielded homogeneous estimates for the
intercept (between-subject coefficient of variation
[90% HDI]=0.1% [0.0, 0.9]), but considerable variance
for the curvature parameter (between-subject coeffi-
cient of variation [90% HDI] =19.7% [15.4, 25.9]).

4. Discussion

The objective of the present study was to investigate the
relationship between external load and the RTF in the
pin press exercise. In contrast to the greater part of pub-
lished research on the topic, we did not confine our
analysis to a single proposed model, but rather included
several previously documented models to address two
major issues: first, we aimed to determine whether a
modelling approach that expresses individual relation-
ships with higher-level commonalities (i.e. a multilevel
model structure) offers substantial advantages in com-
parison to the traditional modelling approach that
pools data without differentiation between subjects.
Second, we compared four different models (Equations
(1) to (4)) to identify which one provides the best
approximation to the relationship in terms of model fit
and predictive accuracy. Analysis was conducted using
a sampling-based Bayesian method, which is considered
helpful in situations with relatively small samples (Lee &
Song, 2004). In addition, Bayesian methods allow the
inclusion of prior information into the parameter esti-
mation process, which may be beneficial to a priori
rule out improbable values, given that adequate prior
knowledge about parameters is available. Our findings
yield further insight into latent structures of the
strength-endurance continuum and provide prac-
titioners with a novel and more accurate approach to
calculate loads corresponding to a given repetition
maximum.

4.1. Multilevel vs. complete-pooling models

To the best of our knowledge, this was the first investi-
gation to compare pooled data modelling on the
relationship between relative load and the RTF to a mul-
tilevel approach that specifies parameter expressions on
an individual level. Complete-pooling model structures
demonstrated both, a worse model fit and lower predic-
tive accuracy compared to multilevel model structures,
which may be attributed to noticeable variance of the
RTF at lower relative loads (Figure 4). These results
support the assumption that traditionally communi-
cated models deploying only group-level parameters
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Figure 2. Comparison of model fit (R* posterior distributions). Dark grey distributions illustrate multilevel models; light grey distri-
butions illustrate complete-pooling models; points represent maximum a posteriori (MAP) estimates; error bars display 90%
highest density intervals (HDIs). Lin, linear regression model; Ex2, exponential 2-parameter regression model; Ex3, exponential 3-par-

ameter regression model; Crit, critical load model.

(e.g. Adams & Beam, 2014; Brzycki, 1993; Desgorces et al.,
2010; Mayhew, Ball, Arnold, & Bowen, 1992; Reynolds,
Gordon, & Robergs, 2006; Sakamoto & Sinclair, 2006)
do not sufficiently account for interindividual variation
in the RTF that can be performed at a given relative
load. Practitioners who apply respective models drawn
from literature should be conscious of a potential esti-
mation error, especially at lighter loads. Improved pre-
dictive accuracy can be expected by modelling the
relationship between load and RTF on an individual
level based on subject-specific data. However, appli-
cation of this concept requires practitioners to assess
the RTF at multiple different loads under comparable
psycho-physiological conditions.

4.2. Linear vs. exponential vs. critical load models

Based upon our findings, the strength-endurance conti-
nuum appears to follow a curvilinear trend at loads of
70% 1-RM and higher, which can be modelled effectively
using an exponential regression or the critical load
model. The results are in accordance with earlier publi-
cations comparing linear to 3-parameter exponential

regression models, whereas authors reported a better
across-subject fit for the nonlinear model, as indicated
by the variance explained (R%) and standard error of esti-
mate (Reynolds et al., 2006; Desgorces et al., 2010). In the
present study, the 3-parameter exponential model
(Equation (3)), that has been previously proposed on
numerous occasions (Reynolds et al, 2006; Mayhew
et al., 1992; Sakamoto & Sinclair, 2006; Desgorces et al.,
2010) showed a slightly better model fit and predictive
accuracy than its 2-parameter alternative (Equation (2))
for the pooled-data fit, although the difference was
not deemed substantial. In case of the multilevel fit,
Equation (2) resulted in exceptionally similar estimates
of R? and LOOIC. Despite our analysis not showing a stat-
istical advantage of the 2-parameter exponential
regression model, it exceeds both the 3-parameter expo-
nential regression model and the critical load model in
terms of simplicity, as indicated by the number of
model parameters. Therefore, we endorse that applying
the 2-parameter exponential regression model to
subject-specific data yields the best representation of a
person’s strength-endurance relationship, without
adding unnecessary complexity to the model.
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Figure 3. The strength-endurance relationship represented by the multilevel 2-parameter exponential regression model. Points rep-
resent subject data (jittered illustration); solid black line displays the group-level model; grey lines display subject-level models. 1-RM,

one-repetition maximum.

4.3. Parameter analysis

Subject-level intercepts of the 2-parameter exponential
regression model (parameter a in Equation (2)) only
showed a small deviation from the group-level par-
ameter, which may be attributed to load being normal-
ised to the individual 1-RM. However, the curvature
parameter (b in Equation (2)) showed considerable vari-
ation between subjects, suggesting that it may consti-
tute the main influence on the individual
manifestation of the strength-endurance relationship.

Table 2. Comparison of 8 models, ranked from best to worst
model performance.

Rank Model n_Pg (n_P;) ALOOIC  SE R? MAP [90% HDI]
1 Ex2 [MLM] 2 (60) 0.0 0.0 0.980 [0.976; 0.982]
2 Ex3 [MLM] 3 (90) -2.7 8.0 0.980 [0.977; 0.983]
3 Crit [MLM] 3 (90) 3.8 7.3 0.981 [0.976; 0.983]
4 Lin [MLM] 2 (60) 39.0% 74 0.972[0.967; 0.976]
5 Ex3 [CPM] 3(0) 104.4*  17.7  0.931[0.923; 0.934]
6 Crit [CPM] 3(0) 106.3*  17.8  0.930 [0.922; 0.934]
7 Ex2 [CPM] 2 (0) 131.0%  18.0  0.915 [0.905; 0.920]
8 Lin [CPM] 2(0) 153.9%* 169 0.894 [0.882; 0.901]

Note: Models are ranked according to their fit, predictive accuracy and sim-
plicity. n_Pg, number of group level parameters (fixed effects); n_Ps,
number of subject level parameters (random effects); ALOOIC, difference
in LOOIC compared to the most efficient model Ex2 [MLM] (lower values
indicating better predictive performance, * indicating a substantial differ-
ence); SE, standard error of the difference in LOOIC; R?, variance explained;
MAP, Maximum a Posteriori estimate; HDI, Highest Density Interval. Ex2,
exponential 2-parameter regression model; Ex3, exponential 3-parameter
regression model; Crit, critical load model; Lin, linear regression model;
MLM, multilevel structure; CPM, complete-pooling structure.

Therefore, future studies should consider employing a
comprehensive analysis on potential confounders that
may affect estimates of the curvature parameter. While
an additional evaluation of model parameters was
beyond the scope of the present study, an exploratory
analysis of subject characteristics and their effect on
subject-level parameters is provided online for inter-
ested readers (Supplemental digital material 3).

4.4. Limitations

Readers should consider that the present study investi-
gated the strength-endurance relationship only in the
specific case of the pin press using a highly controlled
exercise technique without standardising movement
cadence. Hence, the multilevel 2-parameter exponential
regression may not necessarily provide the best approxi-
mation for other exercises that follow a different distri-
bution of the RTF across loads, which questions the
transferability of the present findings to a standard
touch-and-go bench press. Additionally, our findings
only cover for relative loads of 70% 1-RM and above,
therefore neglecting model validity at lower loads.
Finally, models were calculated based on data acquired
during two visits, whereas tests to momentary failure
were exclusively conducted during the second visit
without randomising the order of tests. Therefore, the
possibility of an order effect influencing the acquired
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Figure 4. Posterior summary of the multilevel 2-parameter exponential regression model, including the intercept a (panel A) and
curvature parameters b (panel B). Points represent maximum a posteriori (MAP) estimates; error bars display 90% highest density
intervals [HDI]. Alpha, group-level parameter (fixed effect); a[il, individual-level parameter (random effect) of subject i.

data cannot be ruled out. While a similar approach to
single-visit testing with a fixed order of trials has recently
been proposed for the valid assessment of critical power
(Triska et al., 2021), our data provide no conclusion
whether subjects truly initiated each set to momentary
failure under fully rested conditions. Future research
should therefore target two important objectives: first,
different methodological approaches of assessing RTF
at multiple loads should be compared and it should be
evaluated how they influence the estimated strength-
endurance relationship on a subject-level (e.g. effects
of single-visit vs. multiple-visit data acquisition).
Second, the multilevel relationship between load and
RTF should be investigated using a variety of exercises
with less restrictive movement specifications, including
the touch-and-go bench press.

5. Conclusion

The present study supplies evidence that the strength-
endurance continuum, described by the relationship
between relative load and the number of repetitions

performed to failure, displays substantial interindividual
variation. Practitioners and researchers can address this
issue by modelling the relationship on an individual
level, whereas the 2-parameter exponential regression
evidently constitutes the most efficient model for this
purpose in the pin press exercise.
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