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Social anxiety disorder through the lens of
computational psychiatry

Current treatments for mental health disorders often demon-
strate limited efficacy, stemming in part from a mismatch be-
tween a complex pathophysiology and the rudimentary categor-
ical method of assessment and diagnosis (Kendler et al., 2011,
Fried, 2022). Many researchers (in basic research and clinical re-
search alike) have recently advocated for mental health disor-
ders to be re-defined on the basis of computational principles
and psychological constructs that more accurately map cogni-
tive processes than dimensional approaches (Huys et al., 2021;
Hitchcock et al., 2022). As a result, the burgeoning field of 'com-
putational psychiatry’ (Montague et al., 2012; Friston et al., 2014;
Adams et al.,, 2016; Huys et al, 2016; Zhang, 2023) aims to do
so by taking an interdisciplinary approach, incorporating facets
of psychiatry, neuroscience, mathematics, and artificial intelli-
gence. Most computational psychiatry research to date is the-
ory driven (Huys et al., 2016; Hauser et al., 2022), allowing a for-
mal account of mental health to be made by analysing how al-
terations related to disorders influence behaviour across various
tiers of brain structures. This is implemented through an abduc-
tive strategy by proposing a normal functioning model and then
altering it to generate new hypotheses for biological dysfunction,
or using a deductive method, beginning with established neuro-
biological deficits observed in mental illnesses and incorporating
these deficits into a computational model (Khaleghi et al., 2022).
Theory-driven approaches have identified the computations un-
derlying atypical behaviour for a range of mental health disor-
ders including obsessive-compulsive disorders (Loosen & Hauser,
2020), autism spectrum disorders (Crawley & Zhang et al., 2020),
schizophrenia (Kreis et al., 2022, 2023); attention deficit hyperac-
tivity disorders (Ging-Jehli et al., 2021), psychopathy (Pauli & Lock-
wood, 2023), addiction (Kulkarni et al., 2023), and anxiety (Goldway
et al., 2023).

Among anxiety, social anxiety disorder (SAD) represents a
domain-specific instance, in which the core features of a nega-
tive self-view and a fear of negative evaluation may lead to the
avoidance of social situations (Carleton et al., 2011; Clark et al.,
2005). These behavioural and psychological changes arise from
several differences in terms of the computational processing of
social information. First, individuals with SAD demonstrate sig-
nificantly higher learning from negative social feedback regard-
ing the self (Koban et al., 2017), due to reduced uncertainty about

self-positive attributes (Hopkins et al., 2021; Hoffmann et al., 2023).
Such biased learning leads to the continued avoidance of social
situations while affecting one’s memory for socially valent infor-
mation. For example, individuals with SAD demonstrating poorer
memory for positive social experiences (Romano et al.,, 2020), as
well as a greater negativity bias for perceived memories of social
feedback (Johnston et al., 2023).

Neurocomputational mechanisms of social
feedback processing in SAD

While previous studies demonstrate biased processing of social
information in SAD, the brain regions orchestrating these biases
were not well known. In a recent publication, Koban et al. (2023)
used a functional magnetic resonance imaging (fMRI) paradigm
in which healthy volunteers (n = 16) and individuals with SAD
(n = 16) were asked to give a speech about theirideal job, with self-
evaluation and self-esteem measured in response to positive and
negative feedback received from an ostensible interview panel.
The study employed reinforcement learning model to uncover so-
cial learning biases (Fig. 1), and mediation-based fMRI analyses to
uncover direct and indirect effects between feedback mismatch,
brain activity, and changes in self-perception.

The results first replicated their earlier findings (Koban et al.,
2017), highlighting the increased tendency of those with SAD to
learn from negative feedback compared to neurotypical individu-
als. Using fMRI, the authors demonstrated that this bias was medi-
ated by the anterior insula/frontal operculum, with the ventrome-
dial prefrontal cortex buffering social influence effects on changes
in self-evaluation. Further analyses implied a top-down regula-
tory role of these regions by the frontoparietal network (FPN), a
network proposed to modulate top-down regulatory role of self-
related content (Dixon & Gross, 2021). The authors ultimately sug-
gest a theoretical model in which FPN responses are negatively
biased in SAD, leading to more negative social learning (Fig. 1D).

Understanding SAD with neuroimaging
and computational data

SAD is commonly treated by three main approaches: pharma-
cological, psychological, or a combination of the two, depending
on the individual’s profile (Strohle et al., 2018; Szuhany & Simon,
2022). These therapies take effect by altering the activity of key
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Figure 1: How computational and neuroimaging data can facilitate the treatment of SAD. (A) Illustration of a simple reinforcement learning (RL)
model. a: learning rate; : choice stochasticity; V: action value; p: action probability; C: choice; R: outcome. (B) Computational models represent strong
candidates as potential biomarkers, able to accurately capture parameter values indicative of treatment responsivity at the subject level. (C)
Neuroimaging data of specific brain regions implicated with the pathophysiology of SAD can measure and predict patient responsivity to treatments.
ACC: anterior cingulate cortex. (D) In the FPN model, social learning in response to feedback is modulated by the FPN, which is biased towards negative

compared to positive social feedback in SAD. Adapted from Koban et al., 2023.

brain regions (e.g. measured by either resting state fMRI or task-
based fMRI) implicated with the processing of social information.
For example, pharmacological and psychotherapeutic forms of
treatment lower amygdala activity in response to aversive stim-
uli (Goldin et al., 2013; Klumpp et al., 2013; Klumpp &. Fitzgerald,
2018), while cognitive-behavioural therapy (CBT) improves emo-
tion regulation by increasing prefrontal and occipitotemporal ac-
tivation (Brooks & Stein, 2015).

Neuroimaging methods, therefore, present an objective mea-
sure that can be used to determine the biological components un-
derlying behavioural changes, assess responsivity to treatments,
and generate predictions for health outcomes as 'neuromarkers’
(Gabrieli et al., 2015). Resting-state fMRI (rs-fMRI), measuring in-
trinsic spontaneous fluctuations in blood-oxygen level-dependent
signal, is a popular approach thanks to its ease of use in clin-
ical practice (Fox & Greicius, 2010). In SAD, rs-fMRI has identi-
fled connectivity changes underlying clinical improvement after
completion of a CBT program (Yuan et al.,, 2016, 2018) and, as a
neuromarker, predicted treatment response to group CBT (Yuan
et al., 2017). Task-based fMRI has further identified similar neu-
rocognitive mechanisms underlying symptom reduction in SAD
following common psychotherapies (Goldin et al., 2021). Although
neuromarkers can accurately predict treatment response for SAD
(e.g. Santos etal., 2019; Fig. 1C), this method also demonstrates low
replicability (Ashar et al., 2021) reflecting issues concerning the re-
liability of fMRI measures (Noble et al., 2019) and the heterogeneity
of mental health disorders (Forbes et al., 2023). As one example,
significant within-group differences observed in precuneus and
amygdala rsFC among individuals with SAD, in the absence of any
group-level difference with healthy controls (Mizzi et al.,, 2024),
further necessitates an approach accounting for patient hetero-
geneity when employing a predictive (neural) model (Talmon et
al., 2021).

To this end, computational models provide a theory-driven and
more nuanced measure of the latent cognitive processes shaping
brain activity and behaviour (Karvelis et al., 2023). By establish-
ing a 'computational phenotype’, a set of parameters character-

izing an individual's cognitive mechanisms (Patzelt et al., 2018),
inter- and intra-individual differences—including responsivity to
treatment—can be measured (Fig. 1B). Importantly, Koban et al.
(2023) offer a framework in which computational modeling and
fMRI can be used (either separately or together) to generate more
specific and precise prediction models. In their study, individu-
als with SAD report lower activity of the FPN, correlating with re-
duced learning parameter from positive feedback and enhanced
learning from negative feedback. Responsivity to treatment, be-
haviourally manifesting through changes in social learning rates,
could therefore be inferred by a corresponding increase in FPN
activity (Fig. 1D). This is reflected in a recent study where comple-
tion of a CBT program was found to normalize activity of the FPN
among those with SAD (Haller et al., 2024). Furthermore, computa-
tional and neuroimaging data can be directly combined through
a 'model-based fMRI' approach, in which brain regions associ-
ated with computational processes are identified by including es-
timates of latent variables as predictors of neural signals (e.g.
Glascher & O’'Doherty, 2010; Zhang & Glascher, 2020; Zhang et al.,
2020; Katahira & Toyama, 2021). These computationally informed
brain response patters could be used as complementary neuro-
markers to assess treatment efficacy.

Informing patient-specific interventions through computa-
tional phenotyping is currently limited by the low reliability
(Brown et al, 2020; Waltmann et al., 2022; Vrizzi et al, 2023)
and poor psychometric properties (Karvelis et al.,, 2023) of cer-
tain computational measures. Furthermore, this approach re-
quires knowledge regarding the influence of specific interventions
to specific underlying mechanisms (Reiter et al., 2021; Berwian
et al., 2023). However, progress is being made with determin-
ing sources of within-participant parameter variability (Schaaf
et al., 2023) and mapping psychotherapy interventions to com-
ponents of cognition and behaviour (Norbury et al., 2024). It is
therefore important to determine the within-subject reliability
of model parameters in healthy controls and individuals with
SAD when informing the neurocomputational treatment of social
anxiety.
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Conclusion

Computational psychiatry aims to accurately map the cognitive
and mechanistic foundation underlying behavioural changes ob-
served in mental health disorders. Emerging work has uncovered
the neurocomputational mechanisms underlying biased process-
ing of social feedback in social anxiety, an approach capturing pa-
tient heterogeneity. We advocate for future studies to investigate
the potential for validated computational and cognitive models
as a marker for treatment response.
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