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Abstract

People tend to pay the generosity they receive from a person forward to someone else even if they have no chance to
reciprocate directly. This phenomenon, known as paying-it-forward (PIF) reciprocity, crucially contributes to the mainten-
ance of a cooperative human society by passing kindness among strangers and has been widely studied in evolutionary
biology. To further examine its neural implementation and underlying computations, we used functional magnetic reson-
ance imaging together with computational modeling. In a modified PIF paradigm, participants first received a monetary
split (i.e. greedy, equal or generous) from either a human partner or a computer. They then chose between two options
involving additional amounts of money to be allocated between themselves and an uninvolved person. Behaviorally, people
forward the previously received greed/generosity towards a third person. The social impact of previous treatments is inte-
grated into computational signals in the ventromedial prefrontal cortex and the right temporoparietal junction during
subsequent decision making. Our findings provide insights to understand the proximal origin of PIF reciprocity.

Key words: paying-it-forward (PIF) reciprocity; inequality; model-based fMRI; ventromedial prefrontal cortex (vmPFC);
right temporoparietal junction (TPJ)

Introduction

Pay-it-forward (PIF) reciprocity (also called generalized reci-
procity or ‘upstream’ indirect reciprocity) refers to the phenom-
enon that even in completely anonymous interactions, an
individual, once being helped by a stranger, may transmit the
helping behavior to an uninvolved third person (Nowak and
Sigmund, 2005; Pfeiffer et al., 2005). Despite being observed in

experimental settings of both humans (Bartlett and DeSteno,
2006; Gray et al., 2014; Watanabe et al., 2014) and non-human
species (Rutte and Taborsky, 2007), PIF reciprocity is found
much less likely to evolve in a well-mixed population but only
in small groups (Rankin and Taborsky, 2009) and not easy to in-
terpret from an evolutionary perspective (Pfeiffer et al., 2005;
Rand and Nowak, 2013). In spite of its unclear evolutionary
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mechanism, PIF reciprocity plays an important role, especially
for human beings, in passing kindness and thus constructing a
social norm system in modern societies, which are more and
more characterized by greater mobility and substantial interac-
tions among strangers.

Previous behavioral studies on PIF reciprocity mainly
focused on helping behavior. Bartlett and DeSteno (2006) found
that besides returning actions back to the benefactor, people
even devoted more time to helping a stranger finish a tedious
problem-solving task (Bartlett and DeSteno, 2006). Another be-
havioral study showed that people who are being helped would
transfer more money not only to the benefactor but also to a
stranger (DeSteno et al., 2010). Recent research on PIF reciprocity
extends its scope from helping behavior to fairness-related
behaviors (Gray et al., 2014). For instance, in a series of experi-
ments, Gray et al. (2014) revealed that participants receiving a
greedy treatment (i.e. either monetary splits or workload distri-
bution) behaved more selfishly to a third person, while they
showed more kindness after being treated equally or generously
in previous interactions. Similarly, people receiving an unfair
(vs fair) offer were found to share less money with an unrelated
person (Wu et al., 2015). These findings indicate that people not
only forward kind behaviors but also transmit less socially
favored behaviors such as unfairness (see also Strang et al.,
2016). However, neurobiologically, it is still unclear how people
integrate fairness-related information from previous interac-
tions into subsequent computations and decisions.

To address the above questions, we applied functional mag-
netic resonance imaging (fMRI) in combination with computa-
tional modeling using a modified PIF design. In particular,
participants first received a monetary split either from a real
human player or a computer. They then had to choose one out of
two split options of an additional monetary amount between
themselves and a third person. One option was always a fixed
equal payoff, whereas the other one was unequal, favoring either
the participant or the third person. The rationale behind this
setup was based on previous evidence suggesting that people’s
other-regarding preference depends on the payoff allocation be-
tween themselves and their matched partners (i.e. advantageous
or disadvantageous inequality) (Fehr and Schmidt, 1999; Bolton
and Ockenfels, 2000; Tricomi et al., 2010). To further capture and
quantify the individual’s intrinsic motivation for behaving altruis-
tically in both inequality domains, we adopted the Fehr–Schmidt
model (Fehr and Schmidt, 1999), which has been widely applied
to a various tasks measuring fairness-related preference
(Morishima et al., 2012; Sáez et al., 2015; Gao et al., 2018).

Based on previous findings by Gray et al. (2014), we expected
that after being treated greedily people would be more likely to
behave selfishly to the next person. In contrast, after being
treated generously, they should be more likely to forward the
generosity by sacrificing their own interest. Moreover, recent
studies suggest that the emotion of gratitude generates the PIF
reciprocity and serves as its psychological basis (Chang et al.,
2012). Given the original paper by McCullough et al. (2001), one
of the prerequisites for people to feel gratitude is that the actor’s
generosity has to be intentional rather than accidental
(McCullough et al., 2001). Based on these literature, together
with other studies showing the social-specific effect in social
decision-making tasks (i.e. dictator game or ultimatum game
with a human partner or a computer) (Sanfey et al., 2003; Ruff
et al., 2013), we hypothesize that such inequality-dependent ef-
fect on behaviors should only appear (or be more pronounced)
when participants receive the money from a human partner ra-
ther than a computer.

More importantly, the present study aimed to explore how
the brain computes signals integrating previous social interac-
tions into subsequent decisions. To this end, we took a model-
based fMRI approach (O’Doherty et al., 2007) building on the
assumption that when confronted with a choice, the brain com-
putes a subjective value of each option and then a decision is
made by comparing these values (Padoa-Schioppa, 2011; Levy
and Glimcher, 2012). Based on two lines of research, our model-
based analyses mainly focused on the following two brain
regions. The first region is the ventromedial prefrontal cortex
(vmPFC), which has been shown as the key hub for subjective
value computation during decision-making process in either
neuroimaging studies (Bartra et al., 2013; Clithero and Rangel,
2013) or human lesion studies (Koenigs and Tranel, 2007;
Krajbich et al., 2009). Plus, in a recent study, Chung et al. first
observed that vmPFC integrated the other’s influence (i.e. other-
conferred utility) during a risky decision task (Chung et al.,
2015). The other target region is the right temporoparietal junc-
tions (TPJ), which has been generally associated with social
functions such as mentalization (Frith and Frith, 2006; Schurz
et al., 2014; Schaafsma et al., 2015). Moreover, recent literature
on structural and functional brain imaging revealed the close
link between the right TPJ and prosocial decision-making
(Morishima et al., 2012; Tusche et al., 2016; Park et al., 2017), while
a recent model-based fMRI study has provided further evidence
for its crucial role in the computation of altruistic behaviors in
the context of distributive fairness (Hutcherson et al., 2015).
Taken together, we expected to observe the recruitment of the
vmPFC as well as the right TPJ in value computation in social
contexts (i.e. receiving the monetary split from a person rather
than from a computer). Previous studies have suggested that
the vmPFC may encode both absolute chosen value (i.e. subject-
ive utility of chosen options) (Zhong et al., 2016) and relative
chosen value (i.e. utility difference between chosen and non-
chosen options) (Crockett et al., 2017) in the decision process of
the social context. Given the mixed evidence of vmPFC and rela-
tively scarce evidence revealing to role of the right TPJ in com-
puting choice value in social decision-making task (Hutcherson
et al., 2015; Hill et al., 2017), it is difficult for us to make precise
predictions linking the exact region with the computation of
exact type of values/utilities. Thus we explored the neural com-
putations related to both types of values in the current study.
As an extra, this would also add to the evidence regarding the
brain regions that are involved in computing the two types of
choice values.

In addition, the present study aimed to extend previous find-
ings on neural correlates of inequality perception. Using the ul-
timatum game (Sanfey et al., 2003) or other relevant paradigms
(Haruno and Frith, 2010; Tricomi et al., 2010; Yu et al., 2014),
most previous studies only used disadvantageous splits
(i.e. participants received less money than the partner) as stim-
uli. Surprisingly, however, few studies (Roalf, 2010; Civai et al.,
2012) adopted advantageous splits (i.e. participants received
more money than the partner). Besides, no study, to our know-
ledge, investigated the social-specific effect of inequality on
neural processing by introducing a non-social control (i.e. com-
puter). Based on previous work on the neural signature of un-
fairness (Feng et al., 2015), we assumed that both types of
inequality (i.e. greedy and generous split; vs equal split) recruit
aversive (e.g. anterior insular cortices, AI) and control-related
networks (e.g. lateral prefrontal cortex, lPFC; dorsal anterior cin-
gulate cortex, dACC). We also expected to observe the involve-
ment of the reward circuitry (e.g. ventral striatum, VS) (Haber
and Knutson, 2010; Bhanji and Delgado, 2014) in response to the
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generous splits bringing participants with more monetary prof-
its. Furthermore, we hypothesized that the effect of inequality
would be reflected in the right TPJ especially when people
received money from a human partner (vs computer).

Materials and methods
Participants

Fifty healthy participants (31 females; mean age 6 s.d.¼
25.2 6 3.8 years, ranging from 18 to 33 years; 4 left-handed) were
recruited via online flyers for the fMRI experiment. All partici-
pants had a normal or corrected-to-normal vision and reported
no prior history of psychiatric or neurological disorders.
The study was approved by the ethics committee of the
University of Bonn. Written informed consent was received
from all participants according to the Declaration of Helsinki
(BMJ 1991; 302: 1194). All experimental protocols and procedures
were conducted in accordance with the IRB guidelines for ex-
perimental testing and were in compliance with the latest revi-
sion of the Declaration of Helsinki. In addition, two
independent groups of participants were recruited for the on-
line task (i.e. online Groups A and B, each with 50 online partici-
pants playing the role of Players A and B, respectively) in which
we collected real decisions that were used for the later fMRI ex-
periment as stimuli (see Supplementary data for details).

fMRI task

We adopted and modified the PIF paradigm based on the study
of Gray et al. (2014) in the current fMRI study. Notably, there
were two key modifications. First, we included a non-social con-
trol such that participants received a monetary split either from
a real human player (i.e. Player A) or a computer, which helps
us to dissociate the social-specific components of PIF reci-
procity. Another key modification was that we replaced the free
transfer mode in the original version with a binary choice
scheme. By using the free transfer mode as in previous studies,
participants would be endowed with a certain amount of money
and then asked to make a transfer to a third person whose ini-
tial payoff is 0. As a consequence, the payoff context is always
advantageous to participants (vs the third person), which makes
it impossible to examine people’s decisions and other-regarding
preference in a disadvantageous inequality context.

Hence, an event-related fMRI design was adopted with two
within-subject factors, namely ‘partner’ (i.e. human/computer)
and ‘split’ (i.e. greedy/equal/generous). Each ‘partner� split’
condition consisted of 24 trials (i.e. 144 trials in total).
Specifically, each trial consisted of two independent dictator
games (see Figure 1). In Game 1, participants played the role of
the recipient, who received a certain monetary split with a fixed
total amount of e10 from a proposer, who could be either a real
person (i.e. a Player A in the online Group A; indicated by the
initials; varied across trials) or a computer. Crucially, the pro-
poser could offer a greedy (i.e. giving less than e5), equal (i.e. giv-
ing e5) or generous (i.e. giving more than e5) split to the
participant. This period lasted 2 s, which was followed by an
inter-stimulus interval showing a jittered fixation cross
(mean¼ 3 s; 1 – 5 s). In Game 2, participants played the role of
the proposer. They were presented with two options of money
splits between him-/herself and an uninvolved person (i.e. a
Player B in the online Group B; indicated by the initials; varied
across trials). Particularly, one of the options was always equal
with a fixed payoff earning e5 for both participants and Player B.

The alternative option was unequal, which either earned more
than e5 for the participant (and less than e5 for Player B;
advantageous context), or earned less than e5 for the partici-
pant (and more than e5 for Player B; disadvantageous context).
Participants were asked to select one of the two options within
4 s, by pressing the corresponding buttons on the button box
with their left or right index fingers. Once the decision was
made, a magenta frame appeared to indicate the chosen option
for the remaining time (i.e. 4 s minus the decision time). If they
failed to respond within 4 s or made an unrealistically fast deci-
sion (i.e. decision time<200 ms), a warning screen was pre-
sented for 1 s. As a consequence, participants would not obtain
any money in these trials. Each trial ended with an inter-trial
interval showing another jittered fixation cross (mean¼ 5 s;
3 – 7 s). To increase the variation of the stimuli and maintain
participants’ attention during the experiment, we added a uni-
formly distributed random fluctuation to payoffs (e.g. e8.08/
e1.92; see Supplementary Tables S1 and S2 for the full list of
stimuli in both games). The ‘partner� split’ conditions in Game
1 were pseudo-randomly presented to participants. Besides, a
certain split in Game 1 was randomly paired with an unequal
option in Game 2. Such specific pairs were kept the same for
human partner and computer within each participant, ruling
out the differential payoffs between human and computer
condition.

At the end of the experiment, one trial was randomly
selected, and the payoff in that trial would be used as their final
payment (i.e. the monetary amount they received from a Player
A in the online Group A or the computer in Game 1, plus the
amount they kept in the selected options in Game 2).
Importantly, participants were informed that their chosen deci-
sions would also match the corresponding Player B (in the on-
line Group B) in Game 2 and cause real monetary consequences
for them. Importantly, all these procedures above were real, fol-
lowing the rule of no deception widely used in the behavioral
economic studies.

All stimuli were presented using Presentation v14
(Neurobehavioral Systems, Inc., Albany, CA, USA) on a 3200 liquid
crystal display (NordicNeuroLab, Bergen, Norway) outside the
scanner with a resolution of 800� 600 pixels, using a mirror sys-
tem attached to the head coil.

Procedure

On the day of scanning, participants were first given the
instructions about the experimental task and informed about
the online part. Next, they completed a series of comprehension
questions to ensure that they fully understood the task. Before
the incentivized fMRI task, participants completed a practice
session (i.e. no more than five trials) to get familiar with the
paradigm as well as the button responses in the scanner. The
fMRI task included one functional session lasting �40 min,
which was followed by a 6-min structural scan. In the end, par-
ticipants received, via bank transfer, a e10 show-up fee, a e5
bonus for limiting their head motion during fMRI scanning
(which, if exceeding 3 mm, would not be paid), and a decision-
dependent payoff (range: e2–18).

Data acquisition

Participants’ responses in the scanner were collected via an MRI-
compatible response device (NordicNeuroLab). The imaging data
were acquired on a 3-Tesla Siemens Trio MRI system (Siemens,
Erlangen, Germany) with a 32-channel head coil at the Life & Brain
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Center, University Hospital Bonn. The functional scans were
acquired using a T2*-weighted echo planar imaging (EPI) pulse se-
quence employing a BOLD contrast (TR¼ 2500 ms; TE¼ 30 ms; flip
angle¼ 90�) in 37 axial slices (FOV¼ 192� 192 mm2, matrix¼
96� 96, thickness¼ 3 mm, in-plane resolution¼ 2� 2 mm2) cover-
ing the whole brain volume. Slices were axially oriented along the
AC–PC plane and acquired in ascending order. A high-resolution
structural T1-weighted image was also collected for every partici-
pant using a 3D MRI sequence (TR¼ 1660 ms; TE¼ 2.75 ms; flip
angle¼ 9�; matrix¼ 320� 320; slice thickness¼ 0.8 mm; FOV¼
256� 256 mm2).

Data analyses

Data from two participants were excluded due to excessive
head movements (> 3 mm), thus later analyses were performed
based on the data of remaining 48 participants (30 females).

Behavioral analyses

Behavioral data (i.e. choice and decision time) were analyzed by
mixed-effect regressions using R (http://www.r-project.org/; for
a summary of descriptive statistics, see Table 1; also see
Supplementary data for details). Participants’ decisions in Game
2 were labeled as generous if they chose the option relatively
earning less (more) for themselves (Player B), and otherwise
selfish. To quantify each participant’s degree of aversion to ei-
ther advantageous or disadvantageous inequality (in Game 2),
we adopted the Fehr–Schmidt model (Fehr and Schmidt, 1999)

as the base model (i.e. m1) and established alternative models
by taking into account different factors in Game 1 (i.e. partner,
split or both factors; m2–m5). Model comparison and parameter
estimates were performed with a hierarchical Bayesian ap-
proach via the ‘hBayesDM’ package (Ahn et al., 2017; see
Supplementary data for details).

fMRI analyses

Functional imaging data were analyzed using SPM 8 (Wellcome
Trust Centre for Neuroimaging, University College London,
London, UK). For each participant, the preprocessing of the
functional data followed the common pipeline: (i) the first three
volumes were discarded to allow for the stabilization of the
BOLD signal; (ii) EPI images were realigned to the first volume to
correct motion artifacts and then corrected for slice timing;
(iii) the structural T1 image was co-registered to the mean EPI
images and then segmented into white-matter, grey-matter and
cerebrospinal fluid to generate normalization parameters to
MNI space; (iv) all EPI images were normalized to the MNI space,
resampled with a 2� 2� 2 mm3 resolution, based on parameters
generated in the previous step, and then smoothed using an
8-mm isotropic full width half maximum Gaussian kernel;
(v) high-pass temporal filtering was performed with a cut-off
value of 128 s to remove low-frequency drifts.

For each participant, we established two GLMs to investigate
the effect of ‘partner’ and ‘split’ (Game 1) on computation-
relevant neural signals during decision-making period in Game
2. Specifically, GLM1 contained 12 regressors of interest: the

Fig. 1. Example of trial procedure in the scanner. Each trial included two independent dictator games (labeled as ‘money split game’). In Game 1, participants played

the role of the recipient and received a certain split of money (in total e10) either from a real Player A (indicated by the initials, e.g. L.E.) or the computer (indicated by

an icon), which lasted 2 s. The split could be greedy (i.e. gaining less than e5, as shown here), equal (i.e. gaining e5) or generous (i.e. gaining more than e5) for partici-

pants. Following a jittered fixation cross (1–5 s), participants in Game 2 played the role of the proposer and decided between two options about splitting an additional

amount of money with another person (i.e. Player B) within 4 s. One of the options was always equal with the fixed payoff of e5 for each side; the other option was un-

equal, causing either advantageous (i.e. earning more than Player B, as shown here) or disadvantageous (i.e. earning less than Player B) inequality status for the partici-

pants. Once the decision was made, a magenta frame appeared to indicate the chosen option for the remaining time. The trial ended with another jittered fixation

cross (3–7 s).
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onsets of the decision period in Game 2 sorted by the ‘part-
ner� split’ treatment in Game 1 (i.e. human: greedy, equal, gen-
erous; computer: greedy, equal, generous; duration equals the
actual decision time) as well as the corresponding parametric
modulators (PMs) with absolute chosen values derived from the
winning model. The nuisance regressor consisted of onsets of
the monetary split presentation in Game 1 (duration equals 2 s),
onsets of the decision period with too fast (duration equals ac-
tual decision time) or no response (duration equals 4 s), as well
as the warning feedback (duration equals 1 s) in Game 2, which
were considered as events of no interest. GLM2 was built in the
same way as GLM1 except that we used the relative chosen
values derived from the winning model as the PMs (see
Supplementary data for details).

In addition, we established GLM3 to examine the effect
of ‘partner’ and ‘split’ on the neural responses in Game 1.
Thus, we included the following six regressors of interest,
namely onsets of monetary split presentation sorted by the
‘partner� split’ treatment in Game 1 with the duration of 2 s.
Besides, a regressor modeling events of no interest (i.e. nuis-
ance) was also included, which contained onsets of decisions
(duration equals the actual decision time; for trials of no re-
sponse, duration equals 4 s) and the warning feedback due to
fast response or no response (duration equals 1 s) in Game 2.

For all above GLMs, the canonical hemodynamic response
function was used to model the fMRI signal. Besides, the six
movement parameters were added to all models as covariates
to account for motion artifact. Linear contrasts of regression
coefficients of these regressors of interest (vs implicit baseline;
PMs used in GLM1 and GLM2) were computed at the individual
subject level in each GLM and then forwarded to group-level
random-effect analyses. Particularly, a 2� 3 within-subject flex-
ible factorial ANOVA model was used for contrasts in three
GLMs, respectively, each with the within-subject factors of the
‘partner’, ‘split’ and ‘partner� split’ included. Pair-wise t-tests
were performed to unpack the simple effect of ‘split’ and ‘part-
ner� split’ interaction in above analyses.

We adopted a whole-brain corrected threshold of P< 0.05 at
the cluster-level controlling for family-wise error rate with an
uncorrected voxel-level threshold of P< 0.001 as the cluster-
defining threshold (Eklund et al., 2016) for all results above.
Additionally, a small volume correction (SVC) was conducted
within the pre-defined coordinate-based mask of the right TPJ

based on (Hutcherson et al., 2015). To illustrate the effect of PMs
in GLM1 and GLM2, we adopted the ‘rfxplot’ toolbox (http://
rfxplot.sourceforge.net/; Gläscher, 2009).

Results
Behavioral results

Choice. Compared with the ‘null’ model, the ‘main-effect-only’
model provided a significant better fit to the choice data
[likelihood ratio test, LRT: v2(3)¼ 34.30, P< 0.001], showing that
participants were more likely to choose the generous option
after being treated equally (odds ratio¼ 1.37, b¼ 0.31, P< 0.001)
or generously (odds ratio¼ 1.58, b¼ 0.46, P< 0.001), both com-
pared with receiving the greedy split. A trend-to-significant
increase on likelihood of choosing generous options was
detected when participants received the generous split (vs
equal; odds ratio¼ 1.16, b¼ 0.15, P¼ 0.061). No significant dif-
ference on choosing the generous option was observed be-
tween the human and computer condition (odds ratio¼ 0.96,
b¼�0.04, P¼ 0.551; Figure 2A). However, the model fit was not
improved by additionally including the ‘partner� split’
interaction in the ‘main-and-interaction’ model [vs the
‘main-effect-only’ model; LRT: v2(2)¼ 0.70, P¼ 0.705; see
Supplementary Table S3 for details; for results on decision
time, see Supplementary Figure S1 and Tables S4 and S5 for
details].

Computational modeling. The hierarchical Bayesian analysis and
Bayesian model comparison showed that the model (i.e. m3)
that distinguished advantageous/disadvantageous inequality
aversion parameters in terms of ‘split’ has the lowest WAIC
scores (Figure 2B), suggesting that it outperformed other com-
peting models in term of out-of-sample predictive accuracy. To
further check the effect of ‘split’ on the degree of inequality
aversion in the disadvantageous and advantageous domain, we
performed mixed-effect linear regressions on the posterior
mean of individual a (i.e. the parameter capturing the aversion
degree to disadvantageous inequality, a.k.a., the ‘envy’ param-
eter) and b (i.e. the parameter capturing the aversion degree to
advantageous inequality, a.k.a., the ‘guilt’ parameter) estimates
from the winning model (i.e. m3). In each regression, ‘split’ was
adopted as the fixed-effect predictor (coded as dummy

Table 1. Summary of descriptive statistics in Game 2

Generous Selfish

Human Computer Human Computer

Choice proportion (%; mean6s.d.)a Greedy 18.7618.9 20.1619.1 81.2617.9 79.6619.2
Equal 23.4620.8 23.7621.8 76.2620.5 76.2621.7
Generous 25.7624.5 25.4623.8 74.1624.4 73.9623.3

Decision time Greedy 1756.56505.6 1701.06442.1 1426.86358.4 1400.36340.6
(ms; mean6s.d.) (N) (39) (36) (48) (48)

Equal 1647.16439.2 1710.06484.0 1381.06327.6 1381.86368.4
(N) (37) (34) (48) (48)
Generous 1678.46494.7 1630.76455.8 1451.46437.9 1433.96414.0
(N) (38) (38) (47) (48)

Note: we first calculated the individual-level mean (6s.d.) choice proportion and decision time in terms of specific decisions for each condition, then we calculated the

group-level mean (6s.d.) based on the individual mean; due to individual difference in decisions, the sample size (i.e. N) for each condition of specific decisions is

different.
aThe sample size for calculating the choice proportion is always 48.
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variables; reference level: greedy or equal). Participants felt less
aversive to the disadvantageous unequal option (as denoted by
a) while being treated generously (vs greedy: mean 6 s.d.:
0.83 6 0.79 vs 1.60 6 1.56, b¼�0.77, P< 0.001; vs equal:
1.58 6 1.35, b¼�0.75, P< 0.001). On the other hand, they felt less

aversive to the advantageous unequal option (as denoted by b)
while being treated greedily (vs equal: mean 6 s.d.: 0.18 6 0.34 vs
0.30 6 0.43, b¼�0.12, P< 0.001; vs generous: 0.25 6 0.43,
b¼�0.07, P¼ 0.044; Figure 2C; for results of non-parametric
analyses, see Supplementary Figure S2).

Fig. 2. Behavioral results. (A) The proportion (%) of generous choices participants made in Game 2 given different ‘partner� split’ conditions in Game 1. (B) Bayesian

model comparisons of all five candidate models (m1–m5). The lower WAIC score indicates better out-of-sample prediction accuracy of the candidate model. Here

model 3 (m3) outperforms other candidate models. WAIC, widely applicable information criterion; m1–5¼model 1–5. (C) Bar plot of the group-level mean of the poster-

ior distribution of the estimated parameters based on the winning model (i.e. m3). a measures the degree of aversion to disadvantageous inequality (i.e. how the par-

ticipant dislikes that he/she earned less than Player B); b measures the degree of aversion to advantageous inequality (i.e. how the participant dislikes that he/she

earned more than Player B). Error bars refer to SEM. Significance level: ***P<0.001, *P<0.05.
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Imaging results

Neuro-computations during decision-making in Game 2 (GLM1 and
GLM2). In GLM1, we found a stronger ‘partner�split’ interaction
in signals of absolute chosen values in the vmPFC and left lPFC
[i.e. human: (generous–equal)> computer: (generous–equal)].
These regions showed a more positive modulation when receiv-
ing a generous (vs equal) split from a human partner than from
the computer in Game 1 (Figure 3). Moreover, we showed in
GLM2 that signals of relative chosen values in the right TPJ,
extending to the posterior superior temporal sulci, were stron-
ger while receiving the split from a human partner than from a
computer (Figure 4; see Supplementary Table S6 for details).
No region was detected in other main effects and interaction
contrasts under the same threshold in either GLM.

Neural correlates of inequality perception in Game 1 (GLM3). Either
receiving the greedy or the generous split, compared with the
equal split, yielded a stronger activation in the left AI, dorsal
ACC and bilateral lPFC, which was further confirmed by a con-
junction analysis (i.e. greedy> equal AND generous> equal,
Figure 5A; see Supplementary Table S7 for details). The com-
parison between receiving a generous and a greedy monetary
split, on the other hand, revealed higher activation in reward-
related areas, including the vmPFC and bilateral VS (i.e. gener-
ous> greedy, Figure 5B; see Supplementary Table S8 for details).

Moreover, we found an increased activity in the bilateral
lPFC as well as right TPJ [peak MNI coordinates: 50, �60, 32;
t(235)¼ 3.76, P(SVC-FWE)¼ 0.051] while participants received a
monetary split from a human partner than a computer
(i.e. human> computer). The reverse contrast (i.e. computer-
>human) only yielded activations in occipital areas.
Interestingly, we observed a ‘partner� split’ interaction effect in
the right TPJ extending to the inferior parietal lobule [IPL; peak
MNI coordinates: 56, �48, 34; t(235)¼ 4.06, P(SVC-FWE)¼ 0.020],
which responded stronger for the generous (vs equal) split
offered by a human partner than a computer (i.e. human: [gen-
erous–equal]> computer: [generous–equal]; see Supplementary
Figure S3 and Table S8 for details). No region was detected in
other interaction contrasts under the same threshold.

Discussion

The current fMRI study adopted a modified PIF paradigm to in-
vestigate whether and how people spread inequality to unin-
volved strangers. As predicted, receiving a greedy monetary
split makes people become more selfish themselves. However,
people only showed a marginally significant increase in the
generosity level when they receive a generous monetary split.
More intriguingly, our results from the behavioral modeling fur-
ther confirm and extend the above findings by dissociating peo-
ple’s altruistic motivation from different inequality contexts.

Fig. 3. Impact of previous treatment (Game 1) on neural computation of absolute chosen value (i.e. trial-wise subjective utility of chosen option; GLM 1) during deci-

sion-making process in Game 2. (A) Regions reflecting absolute chosen value while receiving generous (vs equal) splits from a human partner (vs a computer). lPFC, lat-

eral prefrontal cortex; vmPFC, ventral medial prefrontal cortex. For display reason, b values of both regions (local peak voxels) in different conditions were extracted.

Display threshold: cluster-level P (FWE-corrected)<0.05 together with voxel-level P (uncorrected)<0.001. (B) Differential modulation of absolute chosen value on left

lPFC and vmPFC (local peak voxels) in different conditions. Relative chosen value is split into four bins, i.e. low (0–25%), medium–low (25–50%), medium–high (50–75%)

and high (75–100%). Error bars refer to SEM; line refers to the linear fit.
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In the advantageous inequality context (measured by b), people
became less aversive to the advantageous unequal option
(i.e. the selfish option) after receiving the greedy split. In the dis-
advantageous inequality context (measured by a), people were
less aversive to the disadvantageous unequal option (i.e. the
generous option) after receiving a generous split. However, such
change in disadvantageous inequality aversion did not lead to
an overall increase in choosing the generous option.
Presumably, this might be due to the dominance of the advanta-
geous inequality context adopted in the design (i.e. more
trials with advantageous unequal options in Game 2; see
Supplementary Table S2). Taken together, our findings are in
line with the asymmetry shown previously in the PIF task that
participants forward the greed, rather than the generosity, the
most (Gray et al., 2014).

Although no behavioral difference between the human part-
ner and the computer condition was observed, we did observe
significant differences at the brain level especially during the
subsequent decision-making process (Game 2). As predicted, we
observed that the vmPFC integrated both social and inequality
information with signals representing absolute chosen values.
As a crucial region repeatedly involved in value-based decision
making (Rangel and Hare, 2010; Bartra et al., 2013; Clithero and
Rangel, 2013) and social preference (Seo and Lee, 2012), the
vmPFC is proposed to reflect the computation at the time of
decision-making, i.e. reflecting subjective decision-values (Hare
et al., 2008; Ruff and Fehr, 2014). Human lesion studies provide

causal evidence indicating the crucial role of vmPFC in value
computation during economic decision making in social con-
texts (Koenigs and Tranel, 2007; Krajbich et al., 2009). Not only
consistent with previous findings, our results furthermore
showed that computational signals of the vmPFC are found to
be stronger while participants receive a generous split from a
human partner rather than a computer, indicating its role in
integrating social-related contextual information. This result is
not only in line with the general findings in value-based deci-
sion making (Padoa-Schioppa, 2011; Levy and Glimcher, 2012)
but also fits a previous study linking the vmPFC to computation-
al signals during charitable decision-making processes (Hare
et al., 2010). Apart from vmPFC, we also found that the same
contrast yielded stronger activation in the left lPFC. Regarded as
the key hub in executive control (Miller and Cohen, 2001), the
lPFC also plays a critical role in encoding decision values
(Rangel and Hare, 2010), including social contexts (Sanfey, 2007;
Rilling and Sanfey, 2011; Ruff and Fehr, 2014; Strang et al., 2014).
For instance, Crockett et al. (2017) have shown that, while people
evaluated the allocation between a financial gain for them-
selves and somatosensory pain for either themselves or others,
the left lPFC encoded the benefit gained from harming others
instead of the self (Crockett et al., 2017). Our results provide fur-
ther evidence for the role of the dlPFC in computing other-
regarding decision values.

We also revealed a social-specific effect on computations in
the right TPJ during the decision-making period. In particular,

Fig. 4. Impact of previous treatment (Game 1) on neural computation of relative chosen value (i.e. trial-wise subjective utility difference between chosen and non-

chosen option; GLM 2) during decision-making process in Game 2. (A) Regions reflecting relative chosen value while receiving monetary splits from a human partner

(vs a computer). TPJ/pSTG¼ temporo-parietal junction/pSTG. For display reason, b values of both regions (local peak voxels) in different conditions were extracted.

Display threshold: cluster-level P (FWE-corrected)<0.05 together with voxel-level P (uncorrected)< 0.001. (B) Differential modulation of relative chosen value on right

TPJ/pSTG (local peak voxels) in different conditions. Relative chosen value is split into four bins, i.e. low (0–25%), medium–low (25–50%), medium–high (50–75%) and

high (75–100%). Error bars refer to SEM; line refers to the linear fit.
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decision-relevant computational signals of relative chosen val-
ues (i.e. subjective utility differences between the chosen and
non-chosen option) in the right TPJ, extending to posterior su-
perior temporal gyrus (pSTG), are stronger if the previous part-
ner is a human (vs computer). Consistently, the right TPJ
(especially, the posterior part) is also found to respond stronger
to the human partner than to the computer when people re-
ceive the monetary split (especially, the generous split; in

Game 1). A large amount of literature has closely associated the
right TPJ with social cognition (Decety and Lamm, 2007; Van
Overwalle, 2009), especially theory-of-mind/mentalizing
(Schurz et al., 2014; Schaafsma et al., 2015; Tusche et al., 2016).
Regarding the decision-making process, a previous study
revealed a distinct role of the TPJ in predicting decisions when
people interact with a human partner rather than a computer
in an incentivized-strategic poker game (Carter et al., 2012).

Fig. 5. The effect of split on neural correlates in Game 1 (GLM 3). (A) Shared neural representation of both types of inequality. AI, anterior insula; dACC, dorsal anterior

cingulate cortex. (B) Regions showing stronger activation to generous (vs greedy) split. vmPFC, ventral medial prefrontal cortex; VS, ventral striatum. For display reason,

b values from the local peak voxel were extracted in all analyses above. Error bars refer to SEM. display threshold: voxel-level P (uncorrected)<0.001, k¼150.
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Furthermore, recent studies in the field of decision neurosci-
ence unveil the role of the right TPJ in other-regarding prefer-
ence (e.g. generosity), providing both anatomical and functional
evidence (Morishima et al., 2012; Strombach et al., 2015; Park
et al., 2017). Notably, none of the above studies adopts the com-
puter as a non-control condition. Thus, our results further con-
firm the role of the right TPJ in capturing other-regarding
preferences (e.g. altruism and generosity) within the social con-
text. Taken together, our neuroimaging findings suggest that
people implicitly take into account the social component of the
previous treatment affecting later computations during the
decision-making process, although this effect might not be suf-
ficiently intense to boost a behavioral difference.

The present study additionally examines the common and
differential neural representation of different forms of inequal-
ity (in Game 1). In line with our predictions, receiving either of
the two unequal compared with the equal split, activated the
anterior insula (AI; especially, the left part), the dorsal ACC as
well as the bilateral lPFC regardless of the partner. These results
not only replicate previous findings of neural responses toward
disadvantageous inequality (i.e. receiving greedy monetary
splits) (Sanfey et al., 2003) but also extends our knowledge of in-
equality perception to the advantageous domain. As indicated
in a recent meta-analysis on neural correlates of fairness-
related decision making based on the ultimatum game (Feng
et al., 2014), stronger activation in AI toward (disadvantageous)
unequal offers might tackle a cognitive heuristic to detect norm
violations, including either type of inequality. Such a norm vio-
lation causes a potentially motivational conflict between self-
interest and the social norm and also an emotional conflict,
which is presumably monitored or regulated by the dACC
(Botvinick et al., 2004) and resolved by the lPFC (Knoch et al.,
2006; Guo et al., 2014). Interestingly, previous studies examining
both types of inequality did not report the above regions
(Haruno and Frith, 2010; Tricomi et al., 2010; Yu et al., 2014). We
argue that such differences in neural activation might be due to
the task difference. Specifically, in these cases, the unequal
monetary split presented to participants was chosen by the ex-
perimenter, unlike in our case or the ultimatum game where it
was decided by the partner. This might lead to less emotional
conflict and lower recruitment of regions like the dACC or lPFC
during this process. In addition, the direct comparison between
the neural activation during the period of receiving the gener-
ous and greedy splits reveals the involvement of reward-related
areas, including the vmPFC and VS, again as predicted. This
finding can be explained either by the effect of monetary out-
comes, by the intention of kindness, such as a ‘warm glow’
(Andreoni, 1990) or gratitude (Nowak and Roch, 2007), or a mix-
ture of these two factors. However, it is difficult to decide
among those alternatives because no ‘partner� split’ inter-
action is observed in the above regions.

Several caveats are worth notifying regarding the interpret-
ation of results as well as the task design of the current study.
To begin with, we acknowledge that the self-focusing motiv-
ation, rather than indirect reciprocity, serves as an alternative
explanation which predicts the behavioral results equally well
(i.e. I am selfish/generous to the other just because I have less/
more money, rather than you treat me greedy/generous). The
similar behavioral pattern observed in response to human part-
ner and computer might be due to the fact that a real interper-
sonal interaction (e.g. introducing confederates to participants
before the task) was not involved in the present paradigm, as
was the case in another study investigating social decision
making (Zhang et al., 2016). Alternatively, the similar PIF

behavioral pattern observed in the computer condition might
challenge the social-specific feature of PIF reciprocity. Can PIF
reciprocity happen in non-social context? We do not have a
clear answer but, generally speaking, this idea is supported by
previous studies which provide the empirical link that winning/
earning money induces positive emotion/mood (Dunn et al.,
2011), and the latter makes people inclined to behave generous-
ly (Lyubomirsky et al., 2005). More interestingly, a recent behav-
ioral study showed that participants paid the reciprocity back or
forward dependent not only on the generosity degree of givers
but also on their wealth level (i.e. participants received more
money in general from wealthier givers), indicating that the
monetary reward per se indeed exerts an impact (Hackel and
Zaki, 2018). In addition, another possible explanation coming
from the view of social influence (Chung et al., 2015; Leong and
Zaki, 2018) also fits the current results, namely that participants
forward the generosity/greed to the third person merely be-
cause they observe a similar behavior in others. This viewpoint
enlightens future studies which aim at directly comparing
behaviors (and neural activities) between these two conditions
(i.e. receiving Player A’s split vs observing Player A’s behavior to
others). Besides, a baseline condition prior to the fMRI design
(i.e. participants only make choices in Game 2 without any
treatment in Game 1) should be considered, which enables us to
obtain the baseline of people’s social preference, and thus to
calculate the accurate behavioral PIF effect. All in all, future
studies are needed to address these limitations and issues.

In real life, people are always inclined to pass on the kind-
ness to someone else if someone treats them nicely. Here, we
extend the situation to inequality and provide the first empiric-
al evidence, to our knowledge, on the neuro-computational
mechanisms underlying such PIF reciprocity by taking a model-
based fMRI approach (O’Doherty et al., 2007), which becomes an
emergent trend in the field of social neuroscience due to its con-
tribution in providing the mechanistic account for social
decision-making (Dunne and O’Doherty, 2013). Our findings in-
dicate that brain regions involved in value-representation and
social cognition integrate the social-specific (un)equal treat-
ment from a stranger and drives the subsequent other-
regarding decisions to another uninvolved person. Looking
from a different angle, our findings also inspire future studies
on people with mental disorders. For instance, we might expect
that people with autistic spectrum disorder would blur the dis-
tinction between a human partner and a computer both at the
behavioral level and the neural level due to the impairment in
their mentallizing ability (Baron-Cohen et al., 1985). Taken to-
gether, we believe that these results not only improve our
understanding of the neural correlates of PIF reciprocity in the
context of (in)equality, but also have important implications for
more broad areas such as education and social policy.

Supplementary data

Supplementary data are available at SCAN online.

Acknowledgements

We would like to thank Sima Hakimi for proofreading of the
early draft.

Funding

Y.H. was supported by the State Scholarship Fund of the
China Scholarship Council (CSC; No. 201306140034). L.Z. was

Y. Hu et al. | 587

D
ow

nloaded from
 https://academ

ic.oup.com
/scan/article/13/6/578/5034463 by Tracy Kent user on 14 August 2024

Deleted Text: e.g.,
Deleted Text: e.g.,
Deleted Text: .
Deleted Text: i.e.,
Deleted Text: towards 
Deleted Text: ``
Deleted Text: '' 
Deleted Text: i.e.,
Deleted Text: e.g.,
Deleted Text: i.e.,
Deleted Text: i.e.,
Deleted Text: vs.
Deleted Text: i.e.,
Deleted Text:  (ASD) 
https://academic.oup.com/scan/article-lookup/doi/10.1093/scan/nsy040#supplementary-data


partially supported by the German Research Foundation
(DFG GRK 1247), the Bernstein Computational Neuroscience
Program of the German Federal Ministry of Education and
Research (Grant01GQ1006) and the Research Promotion
Fund (FFM) for young scientists of the University Medical
Center Hamburg-Eppendorf. J-C.D. was funded by the grant
‘ANR-NSF CRCNS “SOCIAL_POMDP” n�16-NEUC’. This work
was performed within the framework of the LABEX ANR-11-
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