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Abstract

The recent years have witnessed a dramatic increase in the use of reinforcement learning (RL) models in social, cognitive
and affective neuroscience. This approach, in combination with neuroimaging techniques such as functional magnetic
resonance imaging, enables quantitative investigations into latent mechanistic processes. However, increased use of
relatively complex computational approaches has led to potential misconceptions and imprecise interpretations. Here, we
present a comprehensive framework for the examination of (social) decision-making with the simple Rescorla–Wagner RL
model. We discuss common pitfalls in its application and provide practical suggestions. First, with simulation, we unpack
the functional role of the learning rate and pinpoint what could easily go wrong when interpreting differences in the
learning rate. Then, we discuss the inevitable collinearity between outcome and prediction error in RL models and provide
suggestions of how to justify whether the observed neural activation is related to the prediction error rather than outcome
valence. Finally, we suggest posterior predictive check is a crucial step after model comparison, and we articulate employing
hierarchical modeling for parameter estimation. We aim to provide simple and scalable explanations and practical
guidelines for employing RL models to assist both beginners and advanced users in better implementing and interpreting
their model-based analyses.
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Introduction
Computational modeling has gained increasing attention in
the field of cognitive neuroscience over the past decade.
It formulates human information processing in terms of
basic principles of cognition, defined with latent variables
in formal mathematical notations (Lewandowsky and Farrell,
2010; Forstmann and Wagenmakers, 2015; Box 1). One striking
advantage of employing computational modeling is that it
enables the mechanistic interrogation of trial-by-trial variations
by assuming underlying cognitive processes. For classic methods
based on trial summary statistics (e.g. t-test, ANOVA, linear
regression), these trial-by-trial variations remain inaccessible.
In addition, computational modeling requires the precise and
explicit specification of parameters and variables that drive
behavior. These explicit specifications allow researchers to
perform stricter examinations of whether these models hold
with empirical test, as opposed to more qualitative models that
are much harder to be precisely confirmed. Furthermore, model-
based neuroimaging approaches allow for computations on
how those model-specified decision variables are implemented
in the brain (O’Doherty et al., 2007; Gläscher and O’Doherty,
2010; Cohen et al., 2017). In the field of social neuroscience, the
reinforcement learning framework (RL; Sutton and Barto, 1981,
2018; Lee et al., 2012), among other modeling frameworks (e.g.
Ratcliff and McKoon, 2008; Friston and Kiebel, 2009), has been
widely applied and implemented in various studies involving
learning and decision-making in social contexts (e.g. Behrens
et al., 2008; Hampton et al., 2008; Burke et al., 2010; Lockwood
et al., 2016; Lindström et al., 2019a,b; Zhang and Gläscher, 2020;
for reviews, see Ruff and Fehr, 2014; Konovalov et al., 2018;
Lockwood and Wittmann, 2018; Olsson et al., 2020). Performing
and interpreting computational modeling, though, comes with
many challenges and potential pitfalls, especially to researchers
who are new to computational approaches. For one, cognitive
and social neuroscientists do not necessarily have a formal
training in computational modeling, which involves multiple
steps that require programming as well as quantitative skills
(e.g. statistics, calculus and linear algebra; Lewandowsky and
Farrell, 2010; Wilson and Collins, 2019). These skills may not
always be in the core of cognitive neuroscience curricula nor the
recruiting requirements (though this is currently changing at
rapid pace). Furthermore, the use of RL frameworks to uncover
cognitive process is still in its early stages in social neuroscience
(Ruff and Fehr, 2014; Konovalov et al., 2018; Lockwood and
Klein-Flügge, 2020; Olsson et al., 2020), and techniques and
methods have not yet been formalized. Given these challenges,
it is crucial to understand key concepts and components of RL
and computational modeling before fully embracing it. In fact,
we have extensively encountered with the challenges ourselves,
which was one of the reasons motivating us to write this paper
(see About the authors).

In this tools of trade piece, we aim to provide an easy-to-
follow tutorial on the best practice of employing and interpreting
RL models. We will first provide a clear and comprehensive
explanation of the RL framework using the Rescorla–Wagner
model (Rescorla and Wagner, 1972). Then we will pinpoint sev-
eral common misconceptions and pitfalls when applying and
interpreting RL models and provide suggestions of how to avoid
them (Box 2). We will additionally discuss several practical con-
siderations when designing RL tasks and applying RL mod-
els (Table 1). This tutorial is meant to be helpful to individu-
als who are interested in incorporating RL models into their
own research, for beginners and advanced users alike. Relevant
fields include, but are not limited to, social learning, social

decision-making and social neuroscience. The purpose of this
paper is 2-fold. First, similar to other emerging fields, given the
multistep nature of computational modeling, there is a large
number of researcher degrees of freedom (Simmons et al., 2011;
Wicherts et al., 2016) when using RL models. Here, we provide
suggestions and workflows with detailed examples, with the
goal to facilitate appropriate interpretation of decision vari-
ables and model-identified brain networks. Second, as social
neuroscience moves forward, it is important to go beyond ad
hoc repertoire of somewhat crude summary statistics toward
a mechanistic understanding of neural computations with the
help of computational models. This can be achieved only with
a detailed and accurate comprehension of the computational
algorithms behind the models and with rigorous methodological
considerations. Lastly, in order to facilitate the implementation,
all our analysis scripts and example dataset are openly avail-
able online under the GitHub repository (https://github.com/lei-
zhang/socialRL). It is worth noting that we intend to provide
neither a thorough overview of reinforcement learning nor an
introduction on how to perform computational modeling and
model-based analysis. For a more in-depth review of RL and
computational modeling, we refer the interested readership to
other excellent reviews that discuss this topic (Daw, 2011; Wilson
and Collins, 2019; Lockwood and Klein-Flügge, 2020).

The simple reinforcement learning framework
The reinforcement learning (RL; Sutton and Barto, 2018) model
is perhaps the most influential and widely used computational
model in cognitive psychology and cognitive neuroscience
(including social neuroscience) to uncover otherwise intangible
latent decision variables in learning and decision-making
tasks. Broadly speaking, it describes how an agent (e.g. a
human participant) interacts with the uncertain external world
(e.g. experimental settings) by using the feedback from the
environment (e.g. monetary reward) to form internal values (e.g.
participants’ expected reward) of the actions or decisions it can
take. Note that the value here is not an objective measure, but
instead, is an internal decision variable that is assumed by the
RL model. Here, the agent’s action will result in feedback from
the environment, which in turn will lead the agent to update
the value of the action previously performed. For example, an
agent’s action that leads to positive feedback will be ‘reinforced,’
which means it will result in a higher chance of repeating that
particular action. By contrast, an action that leads to negative
feedback will be devalued, and subsequent similar responses are
made less likely (Thorndike, 1927). A typical experiment under
this RL framework unfolds as follows (Rangel et al., 2008): (i)
two choice alternatives (e.g. abstract symbols) are presented,
(ii) a decision is made between the alternatives, and (iii) a
feedback (e.g. a monetary reward) is delivered based on the
decision. Typically, the link between choice alternatives and
feedback is probabilistic: one alternative comes with a high(er)
chance of a reward, the other one with a complementary low(er)
chance. Hence, the RL model is useful in a variety of paradigms
where there is a probabilistic action–feedback association (from
hereafter we will refer to this probabilistic feedback as the
‘reward schedule’).

Reinforcement learning encompasses an entire family of
models. In its simplest form, the Rescorla–Wagner model, obser-
vations are explained by Pavlovian conditioning (Rescorla and
Wagner, 1972). It has been applied to, for example, category
learning (Poldrack and Foerde, 2008; Ashby and Maddox, 2011),
Pavlovian and instrumental learning in reward and punishment
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Table 1. Food for thought on designing social reinforcement learning tasks and applying RL models

Concern Consideration Example

What is a social RL task? There are commonly two variations: either reward
learning in social contexts (e.g. learn to expect
monetary reward for a social partner) or social
feedback learning (e.g. learn to expect social status or
social evaluation). When the goal is to compare
different types of feedback (e.g. social vs. non-social
feedback), we suggest matching the feedback as
closely as possible on ‘domain general’ properties,
such as salience or preference

Lockwood et al., 2016; Will
et al., 2017

How to initialize values in RL models for a
two-option task?

As a rule of thumb, we suggest initializing values to lie
between the two possible outcomes. For example, if
outcomes are win (+1) and loss (−1), we suggest using
0; if outcomes are win (+1) and neutral (0), we suggest
using 0.5. Note that the range of values in RL models is
determined by the range of outcomes

Wilson and Collins, 2019

Is it possible to use faces as stimuli in social
RL tasks instead of abstract symbols?

Faces could be used as stimuli in the same way as
abstract symbols/fractals, but it is advised to be
cautious to set the initial values because participants
might have a priori preferences. We suggest estimating
the initial value as a free parameter for each face
stimulus or face category (e.g. faces of high vs low
attractiveness)

Chien et al., 2016

How many trials are required to obtain stable
parameter estimates for a two-option task?

The number of trials needed to obtain stable
parameter estimates depends on the reward schedule
(e.g. 85:15 or 70:30). We suggest using simulation to
decide the number of trials. Besides, hierarchical
model estimation is preferred to obtain more stable
parameter results, which is particularly evident for
studies with few observations

Ahn et al., 2017; Wilson and
Collins, 2019; Valton et al.,
2020; Melinscak and Bach,
2020

Could social RL tasks use more than two
choice options?

(Social-)RL tasks are not defined by the number of
choice options. Commonly, the number of options is
between one and four

Daw et al., 2006; Will et al.,
2017

How to determine the range of the learning
rate in RL models?

The learning rate, by definition, is between 0 and 1 Sutton and Barto, 2018

How to determine the range of the Softmax
temperature in RL models?

The theoretical range of the Softmax temperature
parameter is [0, +∞), yet in practice, we suggest
introducing an upper limit to avoid unstable model
estimation A reasonable range is [0, 10]

Sutton and Barto, 2018

Is the learning rate static across trials, or
dynamically adapting along the course of the
experiment?

The learning rate does not necessarily have to be
constant. But in the case of the Rescorla–Wagner
model (and related models), the learning rate is
indeed static. A dynamic learning rate, however, is
possible when other types of models are applied. Note
that the interpretation of the learning rate we
discussed in the main text is independent of this
constant vs dynamic property

Li et al., 2011; Mathys et al.,
2011

Does it provide additional insight to fit
separate learning rates, for positive and
negative feedback, respectively?

It is straightforward to extend the standard
Rescorla–Wagner model with dual learning rates.
However, whether the dual-learning-rate model could
provide more insight than the standard
Rescorla–Wagner model depends on model
comparison results

den Ouden et al., 2013; Hauser
et al., 2015

Is it possible to use RL models in the absence
of choice data?

At least some sort of data is needed to perform model
estimation. For example, skin conductance response
(SCR) or pupil size response (PSR) have been used to fit
RL models in associative fear learning tasks, where
choice data was not available

Li et al., 2011; Tzovara et al.,
2018

What are possible the ways to design a
reversal learning task?

Two aspects need to be considered when designing a
reversal learning task: the number of reversals (once
or twice) and how often the reversals occur (after 10
trials or after 8–12 trials). A drifting reward probability
could also be applied

Gläscher et al., 2009; den
Ouden et al., 2013; Roy et al.,
2014
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Box 1. Glossary.

Box 2. Potential pitfalls and suggestions of best practices.

conditions (Daw et al., 2006; Gläscher et al., 2010; Dolan and
Dayan, 2013; Swart et al., 2017), as well as fear conditioning
(Koizumi et al., 2017; Lindström et al., 2018; Norbury et al., 2018). In
the field of social neuroscience, the RL model has been applied to
studies that examine learning ‘for’ others (Lockwood et al., 2016;
Lockwood et al., 2019), learning ‘from’ others (Behrens et al., 2008;

Burke et al., 2010; Suzuki et al., 2012; Hill et al., 2017; Lindström
et al., 2019a,b; Zhang and Gläscher, 2020) and learning ‘about’
others (Hampton et al., 2008; Zhu et al., 2012; Will et al., 2017;
Lockwood et al., 2018; Yoon et al., 2018).

The central idea of the Rescorla–Wagner RL model (often
referred to as the simple RL model; Jones et al., 2014; Seid-Fatemi
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and Tobler, 2015) quantifies how error-driven learning emerges
after receiving an outcome. That is, the evaluation of a choice
option is updated by the difference between the actual outcome
and the expected outcome. In RL models, such difference is
termed as the reward prediction error, and it is formulated as
follows:

Value update: Vt = Vt−1 + α ∗ PEt−1

Prediction error: PEt−1 = Rt−1 − Vt−1
, (1)

where for the current trial t − 1, the reward prediction error
(PEt−1) represents the difference between the actual outcome
(Rt−1 ∈ {−1, 1}, for negative and positive outcomes, respectively)
and the expected outcome (Vt−1, i.e. internal value signal). This
reward prediction error is then used to update the expected
outcome for the next trial (Vt), scaled by a free parameter (i.e.
to be estimated with model fitting) called learning rate (0 < α < 1;
static across trials in the Rescorla–Wagner model) that calibrates
the impact of the reward prediction error. Note that in the simple
RL model, only the value of the chosen choice option is updated,
whereas the value of the unchosen option remains intact. Note
also that the reward prediction error is not necessarily specific
to monetary reward; instead, it could be generalized to various
other types, like food and emotion.

A principled interpretation of the learning rate
Despite the mathematical definition of the learning rate param-
eter (equation 1), its practical meaning for behavior is not always
straightforward. This can hinder the understanding of the model
and the interpretation of the results. In this section, we thus
provide a comprehensive explanation and a principled interpre-
tation of what role the learning rate plays in the RL model, which,
to our knowledge, is sparsely covered in the literature of social
neuroscience.

In simple terms, the learning rate (α) is a weight parameter
that quantifies how much of the prediction error (i.e. the differ-
ence between the actual and the expected outcome) is incorpo-
rated into the value update (i.e. the evaluation of the expected
outcome of choice alternatives)—the higher this parameter, the
stronger the weighting of the prediction error for the value
update. For instance, when α is 0, the value of the chosen option
is not updated at all, whereas when α is 1, the value of the
chosen option is updated using the entire reward prediction
error. Similarly, when α is 0.5, half of the reward prediction error
is used for the value update. Given this property, the learning rate
is often considered as the step size of learning (Sutton and Barto,
2018) or the speed of learning (Gläscher et al., 2009; Lee et al., 2012;
Lockwood et al., 2016). In this view, the higher the learning rate,
the faster the learning. Unfortunately, this is only half the story,
and the interpretation can be misleading without unpacking the
role of α in the RL model. We will demonstrate this below.

The learning rate indeed reflects the speed of learning. In a
learning environment where the reward schedule is 75:25 (i.e.
75% probability of receiving positive outcome and 25% proba-
bility of receiving negative feedback), a high learning rate (e.g.
α = 0.9) leads to quicker value updating, and the updated value
will approximate its maximum after only two trials, if posi-
tive outcomes (e.g. monetary reward) are observed (Figure 1A,
trials 2–3). However, this high learning rate also causes a dra-
matic value decrease after receiving only one negative feedback
(Figure 1A, trial 7). This means that a high learning rate is helpful
for obtaining faster value updates after receiving positive feed-
back; however, at the same time, it will also cause oversensitivity

to negative feedback (in cases where the better choice alterna-
tive leads to negative feedback, i.e. rare probabilistic negative
feedback). In contrast to higher learning rates, a lower learning
rate (e.g. α = 0.3) will result in slower value updating after positive
feedback, but it will result in less sensitivity to negative feedback
(Figure 1A). How does it come to such asymmetrical effects of
the learning rate? This is due to the second important property
of the learning rate parameter that governs how much recent
outcomes carry over to the value update on the current trial.
Crucially, equation 1 could be redefined as a function of the
initial value and the outcome per trial:

Vt = (1 − α) Vt−1 + αRt−1

= (1 − α) (Vt−2 + α (Rt−2 − Vt−2)) + αRt−1

= (1 − α)t−1V1 +
t−1∑
i=1

(1 − α)t−i−1αRi

, (2)

where V1 is the initial value, t indexes the current trial, and

the term
t−1∑
i=1

(
1 − α

)t−i−1
α depicts the carry over outcome weight,

formulated as a cumulative sum of each trial’s outcome (Ri).
Simply put, this formula describes how much outcomes in the
past contribute to the current value computation. In the case
of a high learning rate (e.g. α = 0.9), only the two most recent
outcomes (t − 1 and t − 2) contribute to the value update, and
the weight on previous outcomes is strongly reduced (Figure 1B).
This is in contrast to a low learning rate (e.g. α = 0.3): although
the impact of the current outcome is weaker relative to a high
learning rate, it shows more long-lasting effects of outcomes that
are received from early on (t − 1 to t − 8; Figure 1B). In short, these
mathematical properties suggest that when the learning rate is
high, only the most recent outcomes matter for the value update,
whereas when the learning rate is low, both recent outcomes
and outcomes from further back contribute to the value update.
This example illustrates why a value update with a high learning
rate is much more influenced by fewer trials, whereas value
update with a low learning rate is not overly sensitive to negative
feedback.

Is there an optimal learning rate?
Overall, a high learning rate suggests faster learning, which will
be influenced most strongly by the most recent outcomes; a
low learning rate indicates slower but steadier learning, which
is influenced by a larger number of past trials (compared to
a high learning rate). These results bring us to the question:
which one is the ‘better’ or more ‘optimal’ learning rate? Which
learning rate will result in more correct choices overall? Is a
higher learning rate better than a lower learning rate or vice
versa? This is a central question of many social neuroscience
studies using computational modeling to identify differences
in behavior by analyzing differences in parameter estimates.
Researchers using RL models have identified differences in the
parameter estimates characterizing behaviors of healthy and
psychiatric populations (e.g. Lin et al., 2012; Fineberg et al., 2018)
and of individuals subjected to a pharmacological treatment vs
control individuals (e.g. Crockett et al., 2008, 2010; Eisenegger
et al., 2013). In social neuroscience, for example, there is evidence
that different learning parameters may characterize learning
in social vs non-social contexts and in self-oriented vs other-
oriented learning (e.g. Lockwood et al., 2016). In the latter case,
what does this imply in terms of models testing for differences
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Fig. 1. Comprehending model parameters of the Rescorla–Wagner model. (A) Effect of different learning rates on value update. (B) Effect of different learning rates on

the weights of past outcomes. (C) Effect of Softmax inverse temperature on converting action value to action probability. (D) Effect of different combinations between

learning rate and Softmax inverse temperature on choice accuracy per trial length (blocks of 10, 20 and 30 trials), for fixed reward schedule tasks (top) and reversal

learning tasks (bottom). Arrows depict the ‘optimal’ combination that predicts highest choice accuracy for each task setup.

between self- and other-oriented optimal decisions and their
possible implications for prosociality and its neural bases?

Here, we demonstrate that there is no generically optimal
learning rate and that the ‘good’ or ‘optimal’ heavily depends on
the research question and the experimental design (e.g. Behrens
et al., 2007; Frank et al., 2007; Daw, 2013; Crawley et al., 2019;
Soltani and Izquierdo, 2019). More importantly, this ‘optimal’
behavior cannot be correctly understood without the other free
parameter in the RL model, the inverse Softmax temperature.
In RL models, after values are updated with the reward predic-
tion error (equation 1), the next step is to utilize those values
on the next trial and make a new decision. This value–choice
connection is depicted by the Softmax choice rule (Sutton and
Barto, 2018), which serves as the likelihood linking function that
bridges the model with the observed data. In the case of choosing
between two options A and B, the Softmax choice rule converts
action values (e.g. V(A), V(B)) to action probabilities (e.g. p(A),
p(B)): the higher the value of A, the more likely A will be selected.

pt (A) = eτ∗Vt(A)

eτ∗Vt(A) + eτ∗Vt(B)
= 1

1 + e−τ∗(Vt(A)−Vt(B))
, (3)

where p is the probability of choosing option A, determined by
the Softmax function with the inverse temperature parameter
(τ > 0). In the case of two choice options, the Softmax function
is simplified as a logistic curve, where the input is the value dif-
ference between V(A) and V(B), and the output is the probability
of choosing A (equation 3). The inverse temperature parameter

(τ ) is the slope of the sigmoid curve, which measures choice
consistency. When τ is small (e.g. τ = 0.2), the curve is shallow,
which represents more random choices (i.e. less consistent).
In contrast, when τ is large (e.g. τ = 5), the curve is steep, and
this represents more consistent choices, in favor of the high(er)
reward option (Figure 1C).

Together, these two parameters, the learning rate (α) and the
inverse temperature (τ ), form the basis of the simple RL modeling
in practice. In order to define ‘optimal’ behavior (i.e. deciding
on the more rewarding option), we recommend researchers to
interpret the joint parameter space of α and τ , rather than either
of them alone. Whether a certain value of α is ‘better’ or ‘worse’
than another depends crucially on the value of τ and vice versa.
Moreover, the optimal combination of these two parameters
depends also on features of the task design. We performed
a simulation study to demonstrate this point (i.e. simulating
synthetic data using known parameters; see also Supplementary
Note 1). Specifically, when the reward schedule is fixed (e.g. 75:25
throughout the entire experiment), a relatively low learning rate
(α ≈ 0.25), paired with a high inverse temperature, is optimal in
choosing the more rewarding choice option (Figure 1D, upper
panel). Higher learning rates in such stable learning environ-
ment would cause suboptimal behavior, because of the over-
sensitivity to negative feedback demonstrated above. However,
the optimal parameter combination is different in the context
of reversal learning tasks (i.e. the reward schedule reverses: the
more rewarding option becomes less rewarding and vice versa)
than stable learning environment. When moderately frequent
reversal exists in the learning environment (e.g. the reward
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schedule reverses every 30 or 50 trials), a relatively high learn-
ing rate (α > 0.6), together with a high inverse temperature, is
optimal. When reversals take place more rapidly (e.g. every 10
trials), a very high learning rate (α ≈ 1), in combination with a
moderately high inverse temperature, is the optimal parameter
(Figure 1D, lower panel).

Importantly, the simulations also illustrate that the relation-
ship between α and the percentage of correct choices depends
on the value of τ . Taking a task with fixed reward schedule
(Figure 1D, upper panel) as example, we observe that for low
values of τ (0 < τ ≤ 2), increases in α generally lead to increases in
correct choices (but note that increases already become negligi-
ble at α ≈ 0.25). For higher values of τ , however, the relationship
becomes non-monotonic: for lower ranges of α (0 < α < 0.25), the
relationship between α and correct choices is positive. After that,
however, increases in α lead to a decline in the number of correct
choices. As an example of how ignoring this complex behavior
might lead to misinterpretations, imagine that a research team
observes that a certain drug increases the average learning rate
in such a RL task from 0.5 to 0.75. They may conclude that
the drug manipulation improved participants’ learning abilities.
However, such a qualitative claim might be invalid without also
taking the values of τ (as well as the task design) into consid-
eration. If participants had low values for τ (< 2), then such a
claim might be warranted. By contrast, if participants had very
high values for τ , a principled interpretation of this result should
rather lead to the conclusion that the drug manipulation gave
rise to less adaptive behavior in this task. Of course, the situation
would be more complex still if there was greater interindividual
variation within τ or if the drug manipulation also influenced
the average value of τ . In either case, a joint interpretation
of parameters, for example, helped by simulations, would be
especially crucial.

In summary, these results demonstrate that the practical
meaning and interpretation of parameters vary between task
designs, and researchers must be cautious when inferring from
differences in parameter estimates to differences in actual
behavior. Importantly, these results concur with our principled
interpretations of the learning rate demonstrated in the last
section. On one hand, when the reward schedule is stable, it
is crucial for an agent to ignore rare and misleading negative
feedback; otherwise, oversensitivity to negative feedback would
lead to suboptimal behavior. On the other hand, when the reward
schedule is volatile, negative feedback is in fact informative
where the most recent outcome matters more than previous
trials; hence, it is important for an agent to detect the reversal
and recompute the action values. Lastly, the recommendations
delivered here demonstrate the usefulness of simulation
studies, which is a powerful tool that helps to deepen our
understanding of the underlying computational models and
to avoid misconceptions when interpreting the results. It is
noteworthy that simulations could be performed before actual
data collection (see Palminteri et al., 2017 and Wilson and Collins,
2019 for a discussion).

Scrutinizing the neural correlates of the
prediction error in the brain
Once we have obtained the individual-level parameters for our
model estimations, we are able to derive trial-by-trial decision
variables that can then help us probe the moment-by-moment
cognitive processes when participants are engaged in RL experi-
ments. In the case of the simple RL model, researchers are often

interested in the prediction error, alongside the subjective value
of the chosen option (i.e. chosen value), which is derived from the
model using individual learning rate (α) and inverse temperature
(τ ). When combined with functional magnetic resonance imag-
ing (fMRI), model-based fMRI (O’Doherty et al., 2007; Gläscher
and O’Doherty, 2010; Cohen et al., 2017) allows us to identify
where and how the prediction error computations are carried
out in the brain. In this regard, there is substantial evidence that
activity in the nucleus accumbens (NAcc) exhibits a parametric
relationship to the reward prediction error (O’Doherty et al., 2003,
2004, 2017; for a review of other brain regions that are associated
with PE, see O’Doherty et al., 2017), and this finding has been
replicated across several studies (e.g. Pagnoni et al., 2002; Pes-
siglione et al., 2006; Behrens et al., 2008; Jocham et al., 2014; Chien
et al., 2016; Klein et al., 2017; Zhang and Gläscher, 2020). However,
it is often ignored that including purely the actual outcome (i.e.
win or loss, coded as 1 or −1) in the fMRI design matrix, instead of
the fine-grained trial-by-trial prediction error derived from the
RL model, contributes to similar neural response in NAcc (e.g.
Cools et al., 2006; Klucharev et al., 2009; Guitart-Masip et al., 2011).
The question here is does NAcc parametrically encode trial-by-
trial prediction error or respond merely to the outcome valence?
In other words, if both prediction error and outcome valence
were accompanied by activity in NAcc, how could we conclude
whether NAcc is encoding prediction error, rather than outcome
valence?

Outcome (R) and prediction error (PE) are often highly cor-
related; it should, therefore, not be surprising that both R and
PE are associated with activity in NAcc. The key to delineating
this collinearity is to inspect its mathematical definition, in
order to justify a neural representation of the PE signal. PE is
computed by the difference between its two subcomponents,
the difference between R and V (expected outcome; equation
1 and Figure 2A). Thus, PE ought to positively correlate with R
and negatively correlate with V (Figure 2B). The intuition here is
that the larger the reward (R), the larger the difference between
R and the expectation (V), hence larger PE, whereas the higher
the expectation (V), the lower the positive (or negative) PE when
being rewarded (or unrewarded) (see Supplementary Note 2 for
more details). Given that the goal of model-based fMRI is to
identify the neural indicators of latent computational variables,
activity in the NAcc should show similar correlation patterns
with R and V, respectively. In other words, to qualify as a neural
basis of the PE, activity in the NAcc should covary positively with
R and negatively with V (Figure 2A). For example, in one previous
study (Zhang and Gläscher, 2020), we found that activities in
the NAcc showed a positive relationship with R (mean effect
size 3–7 s after outcome onset: 0.230, P < 0.0001, permutation
test) and a negative effect of V (mean effect size 3–7 s after
outcome onset: −0.033, P = 0.021, permutation test; Figure 2C).
These findings also replicate previous studies that demonstrated
similar patterns (e.g. Behrens et al., 2008; Niv et al., 2012; Jocham
et al., 2014; Klein et al., 2017).

In summary, when assessing neural correlates of any error-
like signal, we recommend a two-step procedure: first identify
and then justify (see Supplementary Note 3 for practical details).
First, identify the neural correlations of PE with model-based
fMRI analysis (i.e. including PE as the sole parametric regressor).
Second, justify whether the resulting brain areas are indeed
associated with PE, rather than outcome valence, by consid-
ering PE’s two theoretical subcomponents (i.e. actual outcome
R and expected outcome V; Wilson and Niv, 2015). Only when
activities from the resulting brain area(s) positively covary with
the actual outcome (R) and negatively covary with the expected
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Fig. 2. Justifying neural correlates of the prediction error signal. (A) Conceptual illustration of justifying the neural representations of the prediction error (PE) signal

using PE’s two theoretical subcomponents, observed in the nucleus accumbens (NAcc). (B) Correlations between PE and its two subcomponents derived from the model.

(C) Relationships of NAcc time series with PE’s two subcomponents, after outcomes are delivered. Figure adapted from Zhang and Gläscher, 2020.

outcome (V) should that area(s) be justified as the neural basis
of prediction error signaling (see also Supplementary Note 4 for
a discussion and concern of entering R and PE together into
the design matrix). If those activities of the brain area only
have a positive relationship with the actual outcome but no
correlation with the expected outcome, this area only responds
to the outcome valence.

In the field of social neuroscience, it is of interest to examine
a social prediction error and its neural correlates (SPE; e.g. Sun
and Yu, 2014; Lockwood et al., 2016; Zhang and Gläscher, 2020;
for a review, see Lockwood and Wittmann, 2018), but sometimes
the definition of the social prediction error is unclear. Is the SPE
actually a reward prediction error embedded in a social context
(e.g. other-oriented reward learning; Ihssen et al., 2016; Lock-
wood et al., 2016)? Or does the SPE indeed reflect the difference
between actual and expected social feedback (e.g. suggestions
or appraisal from others; Behrens et al., 2008; Will et al., 2017;
Zhang and Gläscher, 2020)? In both cases the SPE is valid and
has given rise to important findings. As for the neural correlates
of the SPE, when the SPE is the reward PE in a social context,
the justification of its neural correlates is the same as that for
the reward PE. When the SPE is reflecting the predictions driven
by social feedback, we recommend identifying first what the
actual social feedback and expected social feedback is and then
using the aforementioned criteria to test the neural correlates of
the social prediction error signal, so as to prevent unnecessary
inflation of ill-specified analysis and misinterpretation of the
social prediction error.

Model validation is as important as model
comparison

When performing computational modeling, it is rarely true that
only one single model is considered to test the potential cogni-
tive processes. More commonly, researchers (i) fit several candi-
date models that vary in terms of model assumption and com-
plexity and then (ii) pit models against one another to decide on
the ‘winning model’ (Lewandowsky and Farrell, 2010; Forstmann
and Wagenmakers, 2015; Wilson and Collins, 2019). The first pro-
cedure is called model estimation and can be achieved using sev-
eral model fitting techniques, such as least squares, maximum
likelihood estimation, maximum a posteriori estimation and
Bayesian estimation (McElreath, 2018). The second procedure is
called model comparison, and it balances a models’ goodness-
of-fit and its generalizability (Lewandowsky and Farrell, 2010;
Gelman et al., 2013; Forstmann and Wagenmakers, 2015; Wilson
and Collins, 2019). This is often done with cross-validation or
information criteria (e.g. the Akaike information criterion, AIC;
Sakamoto et al., 1986; Gelman et al., 2013; the widely applicable
information criterion, WAIC; Gelman et al., 2013; Vehtari et al.,
2016). Model-based analyses are then carried out using decision
variables derived from the winning model. We argue, however,
that in-between deciding on the winning model and any subse-
quent model-based analysis, it is necessary to validate the model
as well. This is not trivial because model comparison merely con-
siders the merits of each model’s performance relative to the rest
(i.e. relative scale). Thus, there is no guarantee that the winning
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model survived from model comparison indeed explains or pre-
dicts the behavioral effect of interest. As an example, among
models whose predictive accuracy are 45, 50 and 55%, model
comparison would identify the model with 55% accuracy as
the best among these three candidates; nevertheless, it is still
a relatively poorly performing model that predicts not much
higher than chance. Therefore, it is necessary to perform model
validation—examining how well the model predicts the data.
Here we demonstrate the validation of a simple RL model with
a posterior predictive check (PPC), the most widely used model
validation approach (Lynch and Western, 2004; Levy et al., 2009;
Gelman et al., 2013).

In essence, the PPC utilizes the parameters’ joint posterior
distribution obtained from model estimation to generate new
predictions and compares whether those predictions are able to
account for effects in the observed data. The predictive distribu-
tion is defined as follows:

p
(
yrep

∣∣y ) =
∫

p
(
yrep |θ )

p
(
θ

∣∣y )
dθ , (4)

where

p
(
θ

∣∣y ) = p
(
y |θ)

p (θ)

p(y)
∝ p

(
y |θ)

p (θ). (5)

Here, p(θ |y) is the joint posterior distribution of model param-
eters given observed data, and it is obtained by model estimation
techniques with the help of the Bayes’ rule (equation 5). The
predictive density, p(yrep|y), depicts the degree to which model-
reproduced data (yrep) corresponds to the actual data (y). This
means a PPC assesses how the predictions of a model devi-
ate from observed data. Importantly, any model’s inability to
account for the key features in behavior falsifies the correspond-
ing model. In turn, this opens up means to improve the model
(Palminteri et al., 2017; Korn and Bach, 2018). To perform a PPC
in the context of a simple RL (Steingroever et al., 2013, 2014;
Frank et al., 2015; Haines et al., 2018; Aylward et al., 2019; see also
Supplementary Note 5 for detailed steps), we let a model gener-
ate synthetic choice data per trial and per participant with the
individual-level parameters acquired from model estimation, for
multiple times (e.g. 1000). Then we conduct the same behavioral
analysis as we previously did with the actual data; in this case,
this is how often participant chooses the more rewarding option
(i.e. percent correct choices). Finally, we compare the deviance
(e.g. mean squared deviation, MSD) between results from syn-
thetic data and actual data. Typically, a PPC is performed at
three levels. At the trial level (averaging across participants), a
PPC examines the trial-by-trial dynamic of the choice behavior
(Figure 3A). At the participant level (averaging across trials), a
PPC assesses the individual variation (Figure 3B). At the over-
all level (averaging across both trials and participants), a PPC
provides the average performance of the model (Figure 3C). To
draw inferences, at either the trial level or the participant level, a
simple correlation between model and data can be calculated to
examine their association. At the overall level, a Bayesian p value
(Gelman et al., 2013) could be computed to assess how much area
under the posterior curve is below the actual data. When the
model systematically under-/overestimates the actual data, we
suggest including additional computation components (either
additional steps or additional parameters) that may overcome
this bias.

In the field of social neuroscience, only a handful of stud-
ies have so far employed PPC (e.g. Zhang and Gläscher, 2020;
Lindström et al., 2019a; Lindström et al., 2019b). However, now

that most cognitive models are constructed using mathemati-
cal operations, which entail the feature to generate new data,
we strongly articulate that performing PPCs is indispensable
when conducting computational modeling. This is especially
true when Bayesian estimation is employed for fitting models
(see the next section). Lacking such direct assessment between
generated data and observed data might lead to less sound
support of the associated cognitive processes, hence resulting
in weaker implications when carrying out subsequent analyses.

Moving toward hierarchical model estimation
There are multiple ways to estimate the learning rate and the
inverse temperature parameters in RL models, with some being
more appropriate than others. Here, we describe why we advo-
cate a hierarchical approach and provide several examples of
toolboxes one can use to perform hierarchical modeling.

Typically, in a study, we are interested in the behavior of sev-
eral subjects and possibly several groups of subjects (e.g. compar-
ing clinical vs non-clinical populations or treatment vs control
groups). The most straightforward approach is to assume that
the parameters are fixed across subjects and estimate one set of
parameters for the entire population. This, however, inevitably
ignores the between-subject variability and could potentially
lead to overstating the differences in parameter means between
groups; hence, results from this approach are not generalizable
to the population (Gelman et al., 2013; Maxwell et al., 2017;
McElreath, 2018). A prevailing approach has therefore been to
estimate a set of parameters for each subject separately (i.e.
treating the parameters as random effects) and then use simple
linear models (e.g. t-tests) to compare groups. The crucial prob-
lem of this method is that it tends to lead to extreme parameter
values (e.g. unlikely low or high learning rates) and it inflates the
population variance (Daw, 2011; Lebreton et al., 2019); thus, it is
not well-suited for comparing group-level statistics.

It is therefore more accurate and stable to estimate both the
individual and group level parameters simultaneously using
hierarchical models (often interchangeable with multilevel
model, mixed model, or partial pooling; Gelman et al., 2013;
Maxwell et al., 2017; McElreath, 2018). The main benefit of this
approach is that we pool data across individuals to explicitly
estimate the mean and variance of the population. The group
estimates then conversely constrains the parameter estimation
of each individual in the group, thus avoiding unlikely extreme
values. Although the advantages of hierarchical models have
long been recognized (Lee, 2011; Bartlema et al., 2014; Lee and
Wagenmakers, 2014; Ahn et al., 2017), it has until recently been
computationally too demanding and complicated to perform.
Advances in computing power and approximation methods
have led to developments of readily available tools and packages
that make these previously less accessible methods easy to
use. These include the hBayesDM toolbox (Ahn et al., 2017), the
VBA toolbox (Daunizeau et al., 2014), the HGF toolbox (Mathys
et al., 2011; Mathys et al., 2014) in the TAPAS software collection
(https://git.io/fjUn8), the HDDM toolbox (Wiecki et al., 2013),
the MFIT toolbox (https://git.io/Je0jw) and the CBM toolbox
(Piray et al., 2019a). All these toolboxes have optimized model
specifications and considered proper parameter distributions.
In fact, many of the toolboxes have already been used in social
neuroscience (e.g. Fineberg et al., 2018; Hu et al., 2018; Zhang
and Gläscher, 2020; see Supplementary Note 6 for statistical
considerations for using hierarchical models to compare group
differences; see also Valton et al., 2020 for a review), and following
the workflow provided by these toolboxes is less prone to
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Fig. 3. Model validation with posterior predictive check (PPC). (A) Trial-by-trial model predictions plotted against actual data. Shaded area depicts the 95% highest

density interval (HDI) of the posterior distribution. (B) Individual’s model prediction compared with actual data, in relation to the identity line. Error bars depict the

95% HDI of the posterior distribution. (C) Grand average model prediction across trials and participants.

misspecification and misinterpretation (in the case of Type II
error) when applying computational modeling.

Concluding summary
In the present work, we raise the awareness of common pitfalls
of employing reinforcement learning (RL) in social neuroscience
and give suggestions of best practices. This is to provide a set
of guidelines to accurately interpret results and to improve sci-
entific practice when using computational modeling. With the
simple Rescorla–Wagner RL model as the example, we provide
a principled and detailed interpretation of the learning rate
using simulation, followed by the illustration of inspecting the
theoretical subcomponents of the prediction error to justify its
neural correlates. Finally, we address the necessity of validating
models alongside model comparison. Besides, we illustrate the
consideration of performing hierarchical modeling and direct
readers to available toolboxes. Note that our suggestions (except
for justifying the PE signal) are neither specific to reinforcement
learning nor to social neuroscience. We recommend running
simulations to gain a better comprehension of parameters for
all kinds of computational models, and importantly, this can be
accomplished even before data collection. Note that although
RL models have been shown to be a powerful tool in social
neuroscience, other forms of models are insightful as well. For
example, the inequality aversion model has been employed to
assess separate types of inequality aversion in economic games
(Gao et al., 2018; Hu et al., 2018; van Baar et al., 2019); the Bayesian
belief update model has been used to study moral decisions
(Siegel et al., 2018, 2019); the interactive partially observable
Markov decision process (i-POMDP) has been applied to examine
higher-level theory of mind during strategic social interaction
(Doshi et al., 2009; Hula et al., 2018; see Rusch et al., 2020 for a
review). Even under the RL framework, other types of RL models,
for example, the two-step RL model (Lockwood et al., 2019) and
RL model with dynamic learning rate (Piray et al., 2019b), are
also applied to a range of social learning paradigms. Discussing
all above models, however, is beyond the scope of this paper;
instead, listing them serves as a roadmap so that interested
readers will know where to start when coming across these
models in their own research.

To conclude, when handled properly, reinforcement learn-
ing models can uncover insightful cognitive processes that
are otherwise intangible with classic approaches in social
neuroscience. It is important to minimize misconception and

misinterpretation when applying reinforcement learning
models in social neuroscience. These suggestions are meant
to aid future studies in interpreting and unpacking the
neurocomputational mechanisms of social behaviors.

Supplementary data
Supplementary data are available at SCAN online.

Data and software availability
Data and custom code to perform simulation and analysis can
be accessed at the GitHub repository: https://github.com/lei-zha
ng/socialRL.
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