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C O G N I T I V E  N E U R O S C I E N C E

A brain network supporting social influences  
in human decision-making
Lei Zhang1,2* and Jan Gläscher1*†

Humans learn from their own trial-and-error experience and observing others. However, it remains unknown how 
brain circuits compute expected values when direct learning and social learning coexist in uncertain environ-
ments. Using a multiplayer reward learning paradigm with 185 participants (39 being scanned) in real time, we 
observed that individuals succumbed to the group when confronted with dissenting information but observing 
confirming information increased their confidence. Leveraging computational modeling and functional mag-
netic resonance imaging, we tracked direct valuation through experience and vicarious valuation through obser-
vation and their dissociable, but interacting neural representations in the ventromedial prefrontal cortex and 
the anterior cingulate cortex, respectively. Their functional coupling with the right temporoparietal junction rep-
resenting instantaneous social information instantiated a hitherto uncharacterized social prediction error, rather 
than a reward prediction error, in the putamen. These findings suggest that an integrated network involving the 
brain’s reward hub and social hub supports social influence in human decision-making.

INTRODUCTION
Human decision-making is affected by direct experiential learning 
and social observational learning. This concerns both big and small 
decisions alike: In addition to our own experience and expectation, 
we care about what our family and friends think of which major we 
choose in college, and we also monitor other peoples’ choices at the 
lunch counter to obtain some guidance for our own menu selection—a 
phenomenon known as social influence. Classic behavioral studies 
have established a systematic experimental paradigm of assessing 
social influence (1), and neuroimaging studies have recently at-
tempted to unravel their neurobiological underpinnings (2, 3). 
However, social influence and subsequent social learning (4) have 
rarely been investigated in conjunction with direct learning.

Direct learning has been characterized in detail with reinforcement 
learning (RL) (5) that describes action selection as a function of valua-
tion, which is updated through a reward prediction error (RPE) as 
a teaching signal (5, 6). While social learning has been modeled by 
similar mechanisms insofar as it simulates vicarious valuation processes 
of observed others (7, 8), most studies only involved one observed indi-
vidual, and paradigms and corresponding computational models have 
not adequately addressed the aggregation of multiple social partners.

Despite the computational distinction between direct learning 
(with experiential reward) and social learning (with vicarious reward), 
neuroimaging studies remain equivocal about the involved brain 
networks: Are the neural circuits recruited for social learning similar 
to those for direct learning? In direct learning, a plethora of human 
functional magnetic resonance imaging (fMRI) studies have impli-
cated a network involving the ventromedial prefrontal cortex (vmPFC) 
that represents individuals’ own valuation (9) and the ventral 
striatum (VS)/nucleus accumbens (NAcc) that encodes the RPE (6). 
These findings mirror neurophysiological recordings in nonhuman 
primates showing the involvement of the orbitofrontal cortex and 

the striatum in direct reward experience (10). Turning to social learn-
ing, evidence from human neuroimaging studies have suggested 
similar neuronal patterns of experience-derived and observation- 
derived valuation, showing that the vmPFC processes value ir-
respective of being delivered to oneself or others (7, 11). However, 
recent studies in both human (12, 13) and nonhuman primates (14) 
have suggested cortical contributions from the anterior cingulate 
cortex (ACC) that specifically tracks rewards allocated to others. 
Although these findings suggest that direct learning and social 
learning are, in part, instantiated in dissociable brain networks, 
only very few studies have investigated how these brain networks 
interact when direct learning and social learning coexist in an un-
certain environment (15), and none of them involved groups larger 
than two individuals.

Here, we investigate the interaction of direct learning and social 
learning at behavioral, computational, and neural levels. We 
hypothesize that individuals’ direct valuation is computed via RL 
and has its neural underpinnings in the interplay between the vmPFC 
and the NAcc, whereas individuals’ vicarious valuation is updated 
by observing their social partners’ performance and is encoded in 
the ACC. In addition, we hypothesize that instantaneous socially 
based information has its basis in the right temporoparietal junc-
tion (rTPJ) that encodes others’ intentions necessary for choices in 
social contexts (12, 16, 17). To test these hypotheses, we designed a 
multistage group decision-making task in which instantaneous 
social influence was directly measured as a response to the revela-
tion of the group’s decision in real time. By further providing 
reward outcomes to all individuals, we enabled participants to learn 
directly from their own experience and vicariously from observing 
others. Our computational model separately updates direct and 
vicarious learning, but they jointly predict individuals’ decisions. 
Using model-based fMRI analyses, we investigate crucial decision 
variables derived from the model, and through connectivity analy-
ses, we demonstrate how different brain regions involved in direct 
and social learning interact and integrate social information into 
individuals’ valuation and action selection. In addition, confidence 
was measured both before and after receiving social informa-
tion, as confidence may modulate individuals’ choices during 
decision-making (3, 18).
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Our data and model suggest that instantaneous social informa-
tion alters both choice and confidence. After receiving the outcome, 
experience-derived values and observation-derived values entail 
comparable contributions to inform future decisions but are dis-
tinctively encoded in the vmPFC and the ACC. We further identify 
an interaction of two brain networks that separately process reward 
information and social information, and their functional coupling 
substantiates an RPE and a social prediction error (SPE) as teaching 
signals for direct learning and social learning.

RESULTS
Participants (N = 185) in groups of five performed the social influ-
ence task, of which 39 were scanned with the MRI scanner. The task 
design used a multiphase paradigm, enabling us to tease apart every 
crucial behavior under social influence (Fig. 1A). Participants 
began each trial with their initial choice (Choice 1) between two 
abstract fractals with complementary reward probabilities (70 and 
30%), followed by their first postdecision bet (Bet 1, an incentivized 
confidence rating from 1 to 3) (19). After sequentially uncovering 
the other players’ first decisions in the sequential order of partici-
pants’ subjective preference (i.e., participants decided on whose 
choice to see in the first place and the second place, followed by the 
remaining two choices), participants had the opportunity to adjust 
their choice (Choice 2) and bet (Bet 2). The final choice and bet 
were then multiplied to determine the outcome on that trial (e.g., 
3 × 20 = 60 cents). Participants’ actual choices were communicated 
in real time to every other participant via intranet connections, thus 
maintaining a high ecological validity. The core of this paradigm 
was a probabilistic reversal learning (PRL) task (fig. S1B) (20). This 
PRL implementation required participants to learn and continuously 
relearn action-outcome associations, thus creating enough uncer-
tainty such that group decisions were likely to be taken into account 
for behavioral adjustments in second decisions (before outcome 
delivery; referred to as instantaneous social influence) and for making 
future decisions on the next trial by observing others’ performance 
(after outcome delivery; referred to as social learning) together with 
participants’ own valuation process (referred to as direct learning). 
These dynamically evolving group decisions also allowed us to 
parametrically test the effect of group consensus, which moved be-
yond using only one social partner or an averaged group opinion 
(2, 12). Although participants were able to gain full action-outcome 
association at the single-trial level, across trials, participants may 
acquire additional valuation information by observing others, given 
the multiple reversal nature of the PRL paradigm. In addition, 
participants were aware that there was neither cooperation nor 
competition (see Materials and Methods).

Social influence alters both action and confidence 
in decision-making
Human participants’ choices tracked option values over probabilis-
tic reversals (Fig. 1B). Participants indeed changed their choice and 
bet after observing group decisions within trials but in the opposite 
direction. Both the choice adjustment and the bet adjustment were 
modulated by a significant interaction between the relative direc-
tion of the group (with versus against) and the group consensus 
(2:2, 3:1, and 4:0, view of each participant; Fig. 1C). In particular, 
participants showed an increasing trend to switch their choice to-
ward the group when faced with more dissenting social informa-

tion, whereas they were more likely to persist when observing 
agreement with the group (main effect of direction: F1,228 = 299.63, 
P < 1.0 × 10−15; main effect of consensus: F2,574 = 131.49, P < 
1.0 × 10−15; direction × consensus: F1,574 = 55.82, P < 1.0 × 10−12; 
Fig. 1D). Conversely, participants tended to increase their bets as a 
function of the group consensus when observing confirming opin-
ions but sustained their bets when being contradicted by the group 
(main effect of direction: F1,734 = 50.95, P < 1.0 × 10−11; main effect 
of consensus: F2,734 = 16.74, P < 1.0 × 10−7; direction × consensus: 
F1,734 = 4.67, P = 0.031; Fig. 1E). Bet difference was also analyzed 
conditioned on participants’ switching behavior on Choice 2, and 
results were in coherent with the main findings (fig. S2A).

We further verified the benefit of considering instantaneous 
social information for behavior adjustments. Participants’ choice 
accuracy of the second decision was significantly higher than that of 
the first one (t185 = 3.971, P = 1.02 × 10−4; Fig. 1F and fig. S2B), and 
participants’ second bet was significantly larger than their first one 
(t185 = 2.665, P = 0.0084; Fig. 1G and fig. S2C). These results sug-
gested that, in the case of behavioral adjustments, despite that 
participants were often confronted with conflicting group decisions, 
considering social information in fact facilitated learning. Notably, 
these behavioral adjustments were not likely due to perceptual con-
flict, in which participants would have randomly made switches, 
hence no learning enhancement. Notably, no such benefit of adjust-
ment was observed in the nonsocial control experiment, where par-
ticipants (N = 36; note S1) were performing this task with intelligent 
computer agents (fig. S1, A, C to F). Note that although we did not 
intentionally manipulate the amount of dissenting social informa-
tion in the main experiment (given the real-time property), it was 
nonetheless randomly distributed (Wald-Wolfowitz runs test, all 
P > 0.05). Moreover, neither the amount of dissenting social inform-
ation nor participants’ choice switching behavior was related to the 
time of reversal or the lapse error indicated by our winning model 
(see Materials and Methods and fig. S2, E and F).

Furthermore, we assessed the learning benefit of considering 
social information between trials. We found that the accuracy of 
Choice 1 on the current trial was modulated by a significant three-
way interaction among choice adjustment on the previous trial 
[Choice 2 switch versus stay (SwSt)], the relative direction of the group 
(with versus against), and the group consensus (2:2, 3:1, and 4:0) (main 
effect of Choice 2 type: F1,1604 = 14.52, P = 1.44 × 10−4; Choice 2 type × di-
rection: F1,1604 = 79.12, P = <1.0 × 10−15; Choice 2 type × consensus: 
F1,1604 = 6.27, P = 0.0019; Choice 2 type × direction × consensus: 
F1,1604 = 16.89, P < 1.0 × 10−4; no other effects were significant, all 
P > 0.05; Fig. 1H). In particular, the accuracy of the current choice was 
improved either when more opposing choices were observed and 
participantss switched between trials or when confirming choices 
were observed and participants retained their choice between trials. 
A significant three-way interaction was also observed for the mag-
nitude of Bet 1 on the current trial, suggesting that participants 
were overall more confident following others’ choices on the previ-
ous trial and this held for both stay or switch decisions (main effect 
of Choice 2 type: F1,1597 = 136.34, P < 1.0 × 10−15; Choice 2 type × 
direction: F1,1597 = 56.92, P = <1.0 × 10−13; Choice 2 type × consen-
sus: F1,1597 = 8.96, P = 1.35 × 10−4; Choice 2 type × direction × con-
sensus: F1,1597 = 5.98, P = 0.0146; no other effects were significant, 
all P > 0.05; Fig. 1I). Notably, in the nonsocial control experiment, 
although participants had a similar choice pattern to that of the 
main experiment (fig. S1H), no effect of confidence was observed 
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between trials (fig. S1I). These results may indicate that behaviors 
in main experiment manifested goal emulation, whereas behav-
iors in the nonsocial control experiments reflected choice imita-

tion (17). Together, our behavioral results demonstrated that social 
information altered individuals’ choice and confidence, which ac-
counted for facilitated learning after behavioral adjustment both 

2500 ms 2000 ms 2 × 2000 ms 3000 ms 2000 ms 3000 ms + ITI

Your choice? Your bet? 1st preference? Change choice? Change bet?

A

FD

2:2

3:1

4:0

Self

C
P = 1.02 × 10−4 P = 0.0084Group consensus

B

Interaction:
P < 1.0 × 10−12

Interaction:
P = 0.031

/

E G

H I
Three-way interaction:

F1,1604 = 16.89, P < 1.0 × 10−4
Three-way interaction:
F1,1597 = 5.98, P = 0.0146

Fig. 1. Experimental task and behavioral results. (A) Task design. Participants (N = 185) made an initial choice and bet (Choice 1 and Bet 1), and after observing the other four 
coplayers’ initial choices, they were asked to make adjustments (Choice 2 and Bet 2), followed by the outcome. (B) Task dynamic. Trial-by-trial behavior for an example participant. 
Blue curves, seven-trial running averages (dark) and predicted choice probabilities from the winning model M6b (light). Green (long) and red (short) bars, rewarded and unre-
warded trials; purple circles, switches on Choice 2; dashed vertical lines, reversals every 8 to 12 trials. (C) Illustration of group consensus (view from each participant). (D) Social 
influence on within-trial choice adjustments. Choice switch probability as a function of group consensus [as (C)] and relative direction (with versus against) of the group. Solid 
lines indicate actual data [means ± within-subject SE (SEM)]. Shaded error bars represent 95% highest density interval (HDI) of mean effects predicted by M6b (i.e., posterior 
predictive checks). (E) Social influence on within-trial bet adjustments. Bet difference as a function of group consensus and direction of the group. Format is as in (D). (F and 
G) Enhanced Choice 2 and Bet 2 performance after adjustment. (H) Social influence on between-trial choice accuracy. Choice 1 accuracy on the current trial as a function of choice 
adjustment on the previous trial (Choice 2 type: SwSt), direction of the group, and group consensus. Format is as in (D). (I) Social influence on between-trial bet magnitude. Bet 1 
magnitude on the current trial as a function of choice adjustment on the previous trial, relative direction of the group, and group consensus. Format is as in (D).
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within trials and between trials, and this benefit could not be ex-
plained by perceptual mismatch and may be specific only when in-
teracting with human partners.

Computational mechanisms of integrated valuation 
between direct learning and social learning
Using computational modeling, we aimed to formally quantify 
latent mechanisms that underlay the learning processes in our task 
on a trial-by-trial basis. Different from existing RL models on social 
learning of a confederate’s advice (12), our model accommodates 
multiple players and is able to simultaneously estimate all partici-
pants’ behaviors (two choices and two bets). Our efforts to construct 
the winning model (Fig. 2A) were guided by two design principles: 
(i) separating individual’s own valuation updated via direct learning 
from vicarious valuation updated via social learning and (ii) distin-
guishing instantaneous social influence before outcome delivery 
from social learning in which action-outcome associations were 
observed from the others. These design principles tied closely with 
our multiple task phases, representing a computationally plausible 
information flow.

On each trial, the option value of Choice 1 (A or B) was modeled 
as a linear combination between values from direct learning (Vself) 
and values from social learning (Vother)

   𝕍  t   =    vself    𝕍  self,t   +    vother    𝕍  other,t    (1)

where

   
 𝕍  self,t    = [ V   self,t  (A ) ,  V  self,t  (B ) ]

    
 𝕍  other,t   = [ V  other,t  (A ) ,  V  other,t  (B ) ]

   (2)

After participants found the other coplayers’ first choices, their 
Choice 2 (switch or stay) was modeled as a function of two counter-
acting influences: (i) the preference-weighted group dissension 
(w.Nagainst) representing the instantaneous social influence and (ii) 
the difference between participants’ action values of Choice 1 
(Vchosen,C1,t − Vunchosen,C1,t) representing the distinctiveness of the 
current value estimates.

Last, when all outcomes were delivered, both Vself and Vother 
were updated. Notably, Vself was updated using the fictitious Rescorla- 
Wagner RL model (20, 21) (Fig. 2B), whereas Vother was updated 
through tracking an exponentially decayed and preference-weighted 
all four other coplayers’ cumulative reward histories (i.e., their 
performance in the recent past; Fig. 2C). Note that our construc-
tion of Vother was in close accordance with previous evidence that 
suggested a discounted outcome history contributing to animals’ 
valuation processes (22) and that the construction of Vother de-
picted social learning by simulating a vicarious valuation process 
by observing others (4, 13, 17, 23). The social learning here was 
weighted by social preference (ws,t) that reflected credibility assign-
ment based on the social partners’ performance (12, 16). Vother did 
not contribute to the learning performance in the nonsocial control 
task despite similar behavioral adjustment patterns compared to the 
main study, suggesting the uniqueness of social learning in so-
cial contexts (fig. S1G). Together, all the above properties granted 
the social feature of Vother and demonstrated its distinct contribu-
tion in addition to Vself (Fig. 2D).

We tested the winning model against alternative computational 
hypotheses under the hierarchical Bayesian framework (Table 1) (24). 
We further verified our winning model using two rigorous validation 

approaches. First, we carried out a parameter recovery analysis to 
assure that all parameters could be accurately and selectively identi-
fied (note S3 and fig. S3). Second, as model comparison provided 
relative model performance, we noted the importance to perform 
posterior predictive checks, and we found that the posterior predic-
tion well captured key behavioral patterns (Fig. 1, D, E, H, and I, 
and fig. S2A).

Parameter estimation results (Fig. 2, E to H) suggested that the 
extent to which participants learned from themselves and from the 
others was on average comparable {(Vself) = 0.84, 95% highest den-
sity interval (HDI): [0.67, 1.01]; (Vother) = 0.78, 95% HDI: [0.59, 0.97]}, 
suggesting that value signals computed from direct learning and 
social learning were jointly used to guide future decisions. These re-
sults were corroborated by a multiple regression where both (Vself) 
(effect = 0.033, P < 1.0 × 10−5) and (Vother) (effect = 0.024, P = 0.0014) 
significantly predicted the accuracy of Choice 1. Possible modula-
tion of Bet 1 on (Vself) and (Vother) was also assessed (note S4 and 
fig. S2D). Furthermore, parameters related to instantaneous social 
information were well capable of predicting individual differences 
of participants’ behavioral adjustment: If the model-derived signal 
was in high accordance with the corresponding pattern of behavioral 
adjustment, then we ought to anticipate a strong association 
between them. We observed a positive correlation between 
(w.Nagainst) and slopes of choice switch probabilities in the against 
condition (r = 0.64, P < 1.0 × 10−21; Fig. 2I; slopes computed from Fig. 1D). 
Similarly, we observed a positive correlation between (w.Nwith) 
and slopes derived from bet differences in the “with” condition 
(r = 0.33, P < 1.0 × 10−5; Fig. 2J; slopes computed from Fig. 1E). 
Together, our computational modeling analyses suggested that par-
ticipants learned both from their direct valuation process and from 
vicarious valuation experience, and values from direct learning and 
social learning jointly contributed to the decision process. More-
over, participants’ behavioral adjustments were predicted by the 
counteracting effects between their initial valuation and the instan-
taneous social information. Next, once we had uncovered those latent 
variables of the decision processes underlying the social influence 
task, we were able to test how they were computed and implemented 
at the neural level using model-based fMRI (25).

Neural substrates of dissociable value signals from direct 
learning and social learning
The first part of our model-based fMRI analyses focused on how 
distinctive decision variables (Fig. 3A) were represented in the 
brain [general linear model 1 (GLM 1)]. We aimed to test the 
hypothesis that distinct and dissociable brain regions were recruited 
to implement direct learning and social learning signals (i.e., com-
ponent value) (3). We observed that the vmPFC [4, 46, −14; see 
table S4 for all Montreal Neurological Institute (MNI) coordinates 
and multiple comparisons correction methods] activity was posi-
tively scaled with Vself and the ACC (2, 10, 36) activity was positively 
scaled with Vother (Fig. 3B). To test whether the two value signals 
were distinctively associated with vmPFC and ACC, we used a 
double-dissociation approach, and we found that Vself was exclu-
sively encoded in the vmPFC ( = 0.1458, P < 1.0 × 10−5; Fig. 3E, red) 
but not in the ACC ( = 0.0128, P = 0.4394; Fig. 3D, red), where-
as Vother was exclusively represented in the ACC (  =  0.1560, 
P < 1.0 × 10−5; Fig. 3D, blue) but not in the vmPFC ( = 0.0011, 
P = 0.9478; Fig. 3E, blue). Computationally, these two sources of 
value signals needed to be integrated to make future decisions 
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(i.e., integrated value) (3). We reasoned that if a region was imple-
menting the integrated value, then it must show functional connec-
tivities with regions tracking each of the value signals (i.e., vmPFC 
and ACC). Using a physio-physiological interaction (PhiPI) analy-
sis, we found that the medial prefrontal cortex (mPFC; 10, 40, 10) 
covaried with both the vmPFC and the ACC (fig. S6A).

Besides the value signals, the RPE signal was firmly associated 
with activities in the bilateral NAcc (Fig. 3C; left: −10, 8, −10; right: 

12, 10, −12). Furthermore, a closer look at the two theoretical sub-
components of RPE was necessary to assess its neural substrates 
(12, 26). Specifically, according to the specification of RPE (Fig. 2B), 
to qualify as a region encoding the RPE signal, activities in the NAcc 
ought to covary positively with the actual outcome (e.g., reward) 
and negatively with the expectation (e.g., value). This property thus 
provides a common framework to test the neural correlates of any 
error-like signal. Under this framework, we indeed found that 

A

E

F

G I J

H

B

C

D

C

Fig. 2. Computational model and its relation to behavior. (A) Schematic representation of the winning model (M6b). Participants’ initial behaviors (Choice 1 and Bet 1) 
were accounted for by value signals updated from direct learning (Vself) and social learning (Vother); behavioral adjustments (Choice 2 and Bet 2) were ascribed to initial 
valuation (Vchosen,t − Vunchosen,t) and preference-weighted instantaneous social information (w.Nwith,t and w.Nagainst,t). (B) Computation of Vself. Vself was updated via the 
fictitious RL model, where values of both choice options were updated. (C) Computation of Vother. Vother was updated through tracking other coplayers’ cumulative reward 
histories in the last three trials (t − 2 to t), weighted by preference and a decay rate, and further normalized to lie between −1 and 1. The ° sign indicates the Hadamard 
product (i.e., element-wise product). (D) Contribution of Vself and Vother to action probability of Choice 1. Both Vself and Vother spanned within their range (−1 to 1), and they 
jointly contributed to P(Choice 1). (E to H) Model parameters of M6b. Posterior density for parameters related to Choice 1 (E), Choice 2 (F), Bet 1 (G), and Bet 2 (H). Short 
vertical bars indicate the posterior mean. Shaded areas depict 95% HDI. (I and J) Relationship between model parameters and behavioral results across participants. 
(I) Relationship between the effect of dissenting social information (w.Nagainst) and the susceptibility to social influence (i.e., slope of switch probability calculated 
from Fig. 1D). (J) Relationship between the effect of confirming social information (w.Nwith) and the extent of bet difference (i.e., slope of bet difference calculated 
from Fig. 1E).
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activities in the NAcc showed a positive effect of participants’ actual 
reward (i.e., R;  = 0.2298, P < 1.0 × 10−5) and a negative effect of 
their valuation (i.e., Vself;  = −0.0327, P = 0.021; Fig. 3F), justifying that 
NAcc was encoding the RPE signal instead of the outcome valence. 
Variables related to participants’ bet did not yield significant clusters.

Neural correlates of dissenting social information 
and behavioral adjustment
We next turned to disentangle the neural substrates of the instanta-
neous social influence (GLM 1) and the subsequent behavioral ad-
justment (GLM 2). Since we have validated enhanced learning after 
considering instantaneous social information (Fig. 1, F and G), we 

reasoned that participants might process other coplayers’ intentions 
relative to their own first decision to make subsequent adjustments 
and this might be related to the mentalizing network (17). On the 
basis of this reasoning, we assessed the parametric modulation of 
preference-weighted dissenting social information (w.Nagainst) and 
found that activities in the TPJ (left: −48, −62, 30; right: 50, −60, 34), 
among other regions, were positively correlated with the dissenting 
social information (fig. S4). Furthermore, the resulting choice 
adjustment (i.e., switch > stay) covaried with activity in bilateral 
dorsolateral prefrontal cortex (dlPFC) (fig. S5, A and D; left: −32, 
48, 16; right: 26, 42, 32), commonly associated with executive 
control and behavioral flexibility across species (20, 27). By contrast, 

Table 1. Candidate computational models, model comparison, and winning model’s parameters. SL, social learning; # Par., number of free parameters at 
the individual level; LOOIC, leave-one-out information criterion relative to the winning model (lower LOOIC value indicates better out-of-sample predictive 
accuracy); weight, model weight calculated with Bayesian model averaging using Bayesian bootstrap (higher model weight value indicates higher probability of 
the candidate model to have generated the observed data). M6b (in bold) is the winning model. 

Class Model Description # Par. LOOIC Weight

Nonsocial models

M1a Simple Rescorla-
Wagner RL

9 3614 0

M1b Fictitious RL 9 2369 0

M1c Pearce-Hall 11 8540 0

Social models: 
instantaneous social 
influence

M2a M1a + instantaneous 
social influence

9 1721 0

M2b M1b + instantaneous 
social influence

9 725 0

M2c M1c + instantaneous 
social influence

11 2715 0

Social models: 
instantaneous social 
influence and social 
learning

M3 M2b + SL (others’ RL 
update)

15 535 0.002

M4 M2b + SL (others’ action 
preference)

13 745 0

M5 M2b + SL (others’ 
current reward)

13 411 0

M6a M2b + SL (others’ 
cumulative reward)

14 164 0

M6b M2b + SL (others’ 
cumulative 

reward) + Bet 1

15 0 0.998

M6b choice-related parameters (mean and 95% HDI)

Choice 1 Choice 2

 0.43 [0.37, 0.50] (bias) −2.17 [−2.39, −1.96]

 0.32 [0.22, 0.43] (Vchosen − Vunchosen) −0.51 [−0.59, −0.43]

(Vself) 0.84 [0.66, 1.01] (Bet 1) −0.19 [−0.28, −0.11]

(Vother) 0.78 [0.60, 0.98] (w.Nagainst) 1.63 [1.37, 1.90]

M6b bet-related parameters (mean and 95% HDI)

Bet 1 Bet 2

 0.55 [0.46, 0.63] (w.Nwith|stay) 0.70 [0.60, 0.80]

(Vchosen − Vunchosen) 0.57 [0.50, 0.64] (w.Nagainst|stay) −0.85 [−1.01, −0.68]

(bias) 0.54 [0.30, 0.77] (w.Nwith|switch) −1.47 [−1.80, −1.14]

(w.Nagainst|switch) 0.44 [0.19, 0.68]
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the vmPFC was more active during stay trials (i.e., stay > switch), 
reminiscent of its representation of one’s own valuation (fig. S5, 
C and F). Hence, these findings were not likely due to learning of 
the task structure but rather were genuinely attributed to dissenting 
social information and choice adjustment, respectively.

A network between brain’s reward circuits and social circuits
Above, we demonstrated how key decision variables related to value 
and reward processing and social information processing were im-
plemented at distinct nodes at the neural level. In the next step, we 
sought to establish how these network nodes were functionally con-
nected to bring about socially induced behavioral change and to 

uncover additional latent computational signals that would other-
wise be undetectable by conventional GLMs.

Using a psychophysiological interaction (PPI) (28), we investi-
gated how behavioral change at Choice 2 was associated with the 
functional coupling between rTPJ that processed instantaneous so-
cial information and other brain regions. This analysis identified 
enhanced connectivity between left putamen (lPut; Fig. 4, A to C; 
−20, 12, −4) and rTPJ as a function of choice adjustment. Closer 
investigations into the computational role of lPut revealed that it 
did not correlate with both subcomponents of the RPE (fig. S6C). 
Instead, as the choice adjustment resulted from processing social 
information, we reasoned that lPut might encode an SPE at the time 

y = 10

:P < 0.05, FWE
RPE VS/NAcc

C F

x = 3

: P < 0.001, SVC

: P < 0.0001, SVC

Vself

: P < 0.001, SVC

: P < 0.0001, SVC

Vother

vmPFC

ACC

A D

EB

L

Fig. 3. Neural substrates of dissociable value signals and RPE. (A) Correlation matrix of value-related decision variables derived from M6b. (B) Neural representation 
of value signals. Vself and Vother were encoded in the vmPFC (red/yellow) and the ACC (blue/light blue), respectively. Sagittal slice at x = 3. Display thresholded at P < 0.001 
and P < 0.0001, small volume–corrected (SVC); actual results were threshold-free cluster enhancement (TFCE) SVC at P < 0.05. (C) Neural representation of RPE. RPE was 
encoded in the VS/NAcc. Coronal slice at y = 10. Display thresholded at P < 0.05, family-wise error (FWE) corrected; actual results were TFCE whole-brain FWE corrected at 
P < 0.05. (D and E) Region of interest (ROI) time series analyses of vmPFC and ACC, demonstrating a double dissociation of the neural signatures of value signals. (D) Blood 
oxygen level–dependent (BOLD) signal of ACC was only positively correlated with Vother ( = 0.1560, P < 1.0 × 10−5, permutation test; blue line), but not with Vself ( = 0.0011, 
P = 0.9478, permutation test; red line), whereas (E) BOLD signal of vmPFC was only positively correlated with Vself ( = 0.1458, P < 1.0 × 10−5, permutation test; red line) but 
not with Vother ( = 0.0128, P = 0.4394, permutation test; blue line). Lines and shaded areas show means ± SEM of  weights across participants. (F) ROI time series analyses 
of VS/NAcc, showing its sensitivity to both components of RPE (i.e., actual reward R and expected reward Vself). BOLD signal of VS/NAcc was positively correlated with 
actual reward ( = 0.2298, P < 1.0 × 10−5, permutation test; green line) and negatively correlated with expected reward ( = −0.0327, P = 0.021, permutation test; red line). 
Format is as in (D). a.u., arbitrary units.
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of observing social information, delineating the difference between 
the actual consensus and the expected consensus of the group. 
Specifically, the expected consensus was approximated by the differ-
ence in participants’ vicarious valuation (Vother,chosen,t − Vother,unchosen,t), 
on the basis that knowing how the others value specific options 
helps individuals model the others’ future behaviors (23, 29) (e.g., 
when Vother,chosen,t − Vother,unchosen,t was large, participants were rela-
tively sure about option values learned from the others, therefore 
anticipating more coherent group choices). Following this reason-
ing, we conducted a similar time series analysis as we did for the 
RPE, and we found that activity in the lPut was indeed positively 
correlated with the actual consensus ( = 0.0363, P = 0.0438) and 
negatively correlated with the expected consensus (  =  −0.0409, 
P = 0.0123; Fig. 4D). This pattern suggested that lPut was effectively 
encoding a hitherto uncharacterized SPE rather than an RPE (fig. 
S6B). Together, these analyses demonstrated that the functional 
coupling between neural representations of social information and 
SPE was enhanced, when this social information was leading to a 
behavioral change.

In the last step, using a PhiPI, we investigated how neural sub-
strates of switching at Choice 2 in the left dlPFC were accom-

panied by the functional coupling of rTPJ and other brain 
regions. This analysis revealed that rTPJ covaried with both vmPFC 
(0, 48, −12) and ACC (0, 0, 40), scaled by the activation level of 
dlPFC (Fig. 4, E to I). Notably, these target regions overlapped with 
regions that represented two value signals in vmPFC and ACC that 
we reported earlier (c.f. Fig. 3B). Collectively, our functional con-
nectivity analyses suggested the interplay of brain regions repre-
senting social information and the propensity for behavioral change 
led to the neural activities of values signals in the vmPFC and ACC, 
which are updated via both direct learning and social learning.

DISCUSSION
Social influence is a powerful modulator of individual choices, yet 
how social influence and subsequent social learning interact with 
direct learning in a probabilistic environment is poorly understood. 
Here, we bridge this gap with a multiplayer social decision-making 
paradigm in real time that allowed us to dissociate between experience- 
driven valuation and observation-driven valuation. In a compre-
hensive neurocomputational approach, we are not only able to 
identify a network of brain regions that represents and integrates 

A B DC

E F HG I

P = 0.0046

P < 1.0 × 10−9
P < 1.0 × 10−10

x = 0

: PhiPI, P < 0.05, FWE

: Vself, P < 0.001, SVC

: Vother, P < 0.001, SVC

: rTPJ ROI

: dlPFC ROI

Switch vs. stay

: PPI, P < 0.05, FWE

: rTPJ ROI

lPut

Fig. 4. Functional connectivity between reward-related regions and social-related regions. (A) Increased functional connectivity between the lPut (green) and the 
seed region rTPJ (blue) as a function of choice adjustment (SwSt). Display thresholded at P < 0.05, FWE corrected. Actual results were TFCE whole-brain FWE corrected at 
P < 0.05. We seeded at the rTPJ because its suprathreshold cluster was larger than the left TPJ (lTPJ) (table S4). Using lTPJ as the seed yielded similar yet slightly weaker 
results. (B) Correlation of activity in seed and target regions for both switch and stay trials in an example participant. (C) Kernel density estimation of coupling strength 
across all participants for switch and stay trials. (D) ROI time series analyses of the lPut, exhibiting an SPE signal: BOLD signal of lPut was positively correlated with the 
actual consensus ( = 0.0363, P = 0.0438, permutation test; green line) and negatively correlated with the expected consensus ( = −0.0409, P = 0.0123, permutation test; 
red line). Format is as in Fig. 3F. (E) PhiPI between social-related regions and reward-related regions. The rTPJ seed (blue) and the left dlPFC seed (yellow) elicited connectivity 
activations (target regions) in the vmPFC and the pMFC (both in green), which partially overlapped with neural correlates of value signals in vmPFC and ACC, as in Fig. 3B. 
Sagittal slice at x = 0. Display thresholded at P < 0.05, FWE corrected; actual results were TFCE whole-brain FWE corrected at P < 0.05. (F to I) Correlation plots of seed and 
target regions for both high and low dlPFC activities in an example subject (F and H) and kernel density estimation of seed-target coupling strengths across all participants 
for high and low dlPFC activities (G and I).
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social information in learning but also characterize the computa-
tional role of each node in this network in detail (Fig. 5), suggesting 
the following process model: Individuals’ own decision is guided by 
a combination of value signals from direct learning (Vself) repre-
sented in the vmPFC (Fig.  3,  B  and  E) and from social learning 
(Vother) represented in a section of the ACC (Fig. 3, B and D). The 
instantaneous social information reflected by decisions from others 
is encoded with respect to one’s own choice in the rTPJ (fig. S4), an 
area linked, but not limited to representations of social information 
and social agents in a variety of tasks (16, 17). rTPJ is also related to 
Theory of Mind (30) and other integrative computations including 
multisensory integration (31). Moreover, dissenting social information 
gives rise to a hitherto uncharacterized SPE (difference between actual 
and expected consensus of the group) represented in the putamen 
(Fig. 4D), unlike the more medial NAcc, which exhibits the neural 
signature of a classic RPE (Fig. 3, C and F) (6). Notably, the interplay 
of putamen and rTPJ modulates behavioral change toward the group 
decision (Fig. 4, A to C) in combination with its neural representation 
of choice switching in the dlPFC (Fig. 4, E to I). These connected 
neural activations functionally couple with the valuation of direct learn-
ing in the vmPFC (Vself) and social learning in the ACC (Vother), thus 
closing the loop of decision-related computations in social contexts.

Our result that direct valuation is encoded in the vmPFC is firmly 
in line with previous evidence from learning and decision-making 
in nonsocial contexts (9) and demonstrates the role of vmPFC in 
experiential learning into a social context. In addition to individuals’ 
own value update, we further show that the ACC encodes value sig-
nals updated from social learning, which is aligned with previous 
studies that have implicated the role of ACC in tracking the volatility 
of social information (12) and vicarious experience (32). In particu-
lar, given that social learning in the current study is represented by 
the preference-weighted cumulative reward histories of the others, 
the dynamics of how well the others were performing in the recent 
past somewhat reflect their volatility in the same learning environment 
(12). Moreover, this distinct neural coding of direct values and 
vicarious values in the current study fundamentally differs from 
previous studies on social decision-making. While previous studies 
have found evidence for a role of vmPFC and ACC in encoding 
self-oriented and other-oriented information (14, 33), those signals 
were invoked when participants were explicitly requested to alter-
nately make decisions for themselves or for others. Crucially in the 

present study, because direct learning and social learning coexisted 
in the probabilistic environment and no overt instruction was given 
to differently track oneself and the others, we argue that these two 
forms of learning processes are implemented in parallel, and our 
winning model indicates that the extent to which individuals rely 
on their own and the others is effectively comparable. Thus, the 
neurocomputational mechanisms being revealed here are very dis-
tinct from those that have been reported previously. Taken collectively, 
these results demonstrate coexisting, yet distinct value computations 
in the vmPFC and the ACC for direct learning and social learning, 
respectively, and are in support of the social valuation–specific 
schema (23).

Our functional connectivity analyses revealed that the mPFC 
covaried with activations in both vmPFC and ACC. According to a 
recent meta-analysis (9), this region is particularly engaged during 
the decision stage when individuals are representing options and 
selecting actions, especially in value-based and goal-directed decision- 
making (34). Hence, it suggests that beyond the dissociable neural 
underpinnings, the direct value and vicarious value are further com-
bined to make subsequent decisions.

Furthermore, we replicated previous evidence that NAcc is asso-
ciated with the RPE computation instead of mere outcome valence 
(12, 26). That is, if a brain region encodes the RPE, then its activity 
should be positively correlated with the actual outcome and nega-
tively correlated with the expected outcome. Beyond reassuring the 
RPE signal encoded in the NAcc, the corresponding time series 
analysis serves as a verification framework for testing neural cor-
relates of any error-like signals. Hence, our connectivity results seeded 
at the rTPJ identified a hitherto uncharacterized SPE, the difference 
between actual and expected social outcome, that is encoded in a 
section of the putamen. This suggests that the SPE signal may trig-
ger a recomputation of expected values and give rise to the subse-
quent behavioral adjustment. We nonetheless acknowledge that the 
connectivity analyses here assess correlation rather than directionality 
and establishing the casual account using brain stimulations (35) or 
pharmacological manipulations (36) would be a promising avenue 
for future work. Albeit this methodological consideration, these 
functional connectivity results concur with previous evidence that 
the rTPJ has functional links with the brain’s reward network, of 
which the striatal region is a central hub (37).

It is perhaps unexpected and interesting that we did not find sig-
nificant neural correlates with postdecision confidence (i.e., “bet”). 
This might be due to the fact that decision cues in our current de-
sign (i.e., Choice 1, Bet 1, Choice 2, and Bet 2) were not presented 
far apart in time, such that even carefully specified GLMs were not 
able to capture the variance related to bets. Bets in the current 
design were closely tied to the corresponding choice valuation. That 
is, when individuals were sure that one option would lead to a re-
ward, they tended to place a high bet. This relationship was well 
reflected in our winning model and related model parameters 
(Fig. 2G): Bet magnitude was positively correlated with value sig-
nals, thus inevitably resulting in colinear regressors and di-
minishing the statistical power when assessing its neural correlates. 
In addition, individuals’ response time might be needed to dis-
sociate confidence from their valuation (18). These caveats aside, 
our results nonetheless shed light on the change in confidence after 
incorporating social information in decision-making, which goes 
beyond evidence from previous studies that neither directly ad-
dressed the difference in confidence before and after exposing the 

Direct learning (Vself)

Instantaneous
social influence

Switch versus stay

RPE/SPE

Social learning (Vother)

vmPFC

ACCrTPJ

NAcc/lPut

dlPFC

Fig. 5. Schematic illustration of the brain network supporting social influence 
in decision-making as uncovered in this study (for details, see main text). 
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social information nor examined the interface between choice and 
confidence (3).

Note also that the model space in the current study is not ex-
haustive. In particular, we did not test Bayesian models that would 
track more complex task dynamics (38, 39), as this class of models 
may not give advantages in our task environment (40). The com-
plexity of our task structure, with making four sets of choices and 
bets and observing two sets of actions as well as the action-outcome 
associations from four other coplayers, made the construction of 
explicit representation prescribed by Bayesian models rather chal-
lenging. In addition, it is so far still unanswered whether RL-like 
models or Bayesian models provide a more veridical description of 
how humans make decisions under uncertainty (41). Regardless of 
this debate, our fictitious RL model implemented for direct learning 
is reconciled with previous findings showing its success in reversal 
learning tasks in both humans (20) and nonhuman primates (15, 27).

In summary, our results provide behavioral, computational, and 
neural evidence for dissociable representations of direct valuation 
learned from own experience and vicarious valuation learn from 
observations of social partners. Moreover, these findings suggest a 
network of distinct, yet interacting brain regions substantiating cru-
cial computational variables that underlie these two forms of learn-
ing. Such a network is in a prime position to process decisions of the 
sorts mentioned at the beginning, where—as in the example of a 
lunch order—we have to balance our own experienced-based re-
ward expectations with the expectations of congruency with others 
and use the resulting error signals to flexibly adapt our choice be-
havior in social contexts.

MATERIALS AND METHODS
Participants
Forty-one groups of five healthy, right-handed participants were 
invited to participate in the main experiment. No one had any his-
tory of neurological and psychiatric diseases nor current medication 
except contraceptives or any MR-incompatible foreign object in the 
body. To avoid gender bias, each group consisted of only same-gender 
participants. To avoid familiarity bias, we explicitly specified in the 
recruitment that if friends were signing up, then they should sign up 
for different sessions. Forty-one of 205 participants (i.e., one of each 
group) were scanned with fMRI while undergoing the experimental 
task. The remaining 164 participants were engaged in the same task 
via intranet connections while being seated in the adjacent behavioral 
testing room outside the scanner. Twenty of 205 participants who 
had only switched once or had no switch at all were excluded, includ-
ing two fMRI participants. This was to ensure that the analysis was not 
biased by these nonresponders. The final sample consisted of 185 par-
ticipants (95 females; mean age, 25.56 ± 3.98 years; age range, 18 to 
37 years), and among them, 39 participants belonged to the fMRI 
group (20 females; mean age, 25.59 ± 3.51 years; age range, 20 to 37 years).

All participants in both studies gave informed written consent 
before the experiment. The study was conducted in accordance 
with the Declaration of Helsinki and was approved by the Ethics 
Committee of the Medical Association of Hamburg (PV3661).

Experimental design
Underlying PRL paradigm
The core of our social influence task was a PRL task. In our two- 
alternative forced choice PRL (fig. S1B), each choice option was 

associated with a particular reward probability (i.e., 70 and 30%). 
After a variable length of trials (length randomly sampled from a 
uniform distribution between 8 and 12 trials), the reward contin-
gencies reversed, such that individuals who were undergoing this 
task needed to readapt to the new reward contingencies so as to 
maximize their outcome. Given that there was always a “correct” 
option, which led to more reward than punishment, alongside an 
“incorrect” option, which caused otherwise, a higher-order anti-
correlation structure thus existed to represent the underlying reward 
dynamics. This task specification also laid the foundation for our 
use of fictitious RL model with counterfactual updating (15, 20, 27).

We used the PRL task rather than tasks with constant reward 
probability (e.g., always 70%) because the PRL task structure 
required participants to continuously pay attention to the reward 
contingency, to adapt to the potentially new state of the reward struc-
ture, and to ignore the (rare) probabilistic punishment from the 
correct option. As a result, the PRL task assured constant learning 
throughout the entire experiment: Choice accuracy reduced after 
reversal took place but soon reinstated (fig. S2, B and C). One of our 
early pilot studies used a fixed reward probability. There, participants 
quickly learned the reward contingency and neglected the social in-
formation; thus, in this setup, we could not tease apart the contribu-
tions between reward-based influence and socially based influence.
Breakdown of the social influence task (main study)
For each experimental session, a group of five participants were 
presented with and engaged in the same PRL task via an intranet 
connection without experimental deception. For a certain partici-
pant, portrait photos of the other four same-gender coplayers were 
always displayed within trials (Fig. 1A). This manipulation further 
increased the ecological validity of the task, at the same time creat-
ing a more engaging situation for the participants.

The social influence task contained six phases. (i) Phase 1. Initial 
choice (Choice 1). Upon the presentation of two choice options 
using abstract fractals, participants were asked to make their initial 
choice. A yellow frame was then presented to highlight the chosen 
option. (ii) Phase 2. Initial bet (Bet 1). After making Choice 1, partici-
pants were asked to indicate how confident they were in their 
choice, being “1” (not confident), “2” (reasonably confident), or “3” 
(very confident). Notably, the confidence ratings also served as 
postdecision wagering metric (an incentivized confidence rat-
ing) (18, 19); namely, the ratings would be multiplied by their po-
tential outcome on each trial. For instance, if a participant won on a 
particular trial, then the reward unit (i.e., 20 cents in the current 
setting) was multiplied with the rating (e.g., a bet of 2) to obtain the 
final outcome (20 × 2 = 40 cents). Therefore, the confidence rating 
in the current paradigm was referred to as bet. A yellow frame was 
presented to highlight the chosen bet. (iii) Phase 3. Preference giving. 
Once all participants had provided their Choice 1 and Bet 1, the 
choices (but not the bets) of the other coplayers were revealed. Cru-
cially, instead of seeing all four other choices at the same time, 
participants had the opportunity to sequentially uncover their peer’s 
decisions. In particular, participants could decide whom to uncover 
first and whom to uncover second, depending on their preference. 
Choices belonged to the preferred coplayers were then displayed 
underneath the corresponding photo. The remaining two choices 
were displayed automatically afterward. This manipulation was 
essential, because, in studies of decision-making, individuals tend 
to assign different credibility to their social peers based on their per-
formance (12, 16), and the resulting social preference may play an 
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important role in social decision-making (23). In the current study, 
because there were four other coplayers in the same learning envi-
ronment, it was likely that they had various performance levels and 
therefore would receive different preferences from the observer. (iv) 
Phase 4. Choice adjustment (Choice 2). When all four other choices 
were presented, participants were able to adjust their choices given 
the instantaneous social information. The yellow frame was shifted 
accordingly to highlight the adjusted choice. (v) Phase 5. Bet adjustment 
(Bet 2). After the choice adjustment, participants might adjust their 
bet as well. In addition, participants also observed other coplayers’ 
Choice 2 (on top of their Choice 1) once they had submitted their 
adjusted bets. Presenting other coplayers’ choices after participants’ 
bet adjustment rather than after their choice adjustment prevented 
a biased bet adjustment by the additional social information. The 
yellow frame was shifted accordingly to highlight the adjusted bet. 
(vi) Phase 6. Outcome delivery. Last, the outcome was determined by the 
combination of participants’ Choice 2 and Bet 2 (e.g., 20 × 2 = 40 cents). 
Outcomes of the other coplayers were also displayed but shown 
only as of the single reward unit (i.e., 20 cents gain or loss) without 
being multiplied with their Bet 2. This was to provide participants 
with sufficient yet not overwhelming information about their peer’s 
performance. On each trial, the reward was assigned to only one choice 
option given the reward probability; that is, only choosing one op-
tion would lead to a reward, whereas choosing the other option 
would lead to a punishment. The reward realization sequence 
(trial-by-trial complementary win and loss) was generated with a 
pseudo-random order according to the reward probability before 
the experiment, and this sequence was identical within each group.

Experimental procedure
To ensure a complete understanding of the task procedure, this 
study was composed of a 2-day procedure: prescanning training 
(day 1), and main experiment (day 2).
Prescanning training (day 1)
One to 2 days before the MRI scanning, five participants came to 
the behavioral laboratory to participate in the prescanning training. 
Upon arrival, they received the written task instruction and the con-
sent form. After returning the written consent, participants were 
taken through a step-by-step task instruction by the experimenter. 
Notably, participants were explicitly informed (i) that an intranet 
connection was established so that they would observe real responses 
from the others, (ii) what probabilistic reward meant by receiving 
examples, (iii) that there was neither cooperation nor competition 
in this experiment, and (iv) that the reward probability could re-
verse multiple times over the course of the experiment, but partici-
pants were not informed about when and how often this reversal 
would take place. To shift the focus of the study away from social 
influence, we stressed the experiment as a multiplayer decision 
game, where the goal was to detect the “good option” so as to maximize 
their personal payoff in the end. Given this uncertainty, participants 
were instructed that they may either trust their own learning expe-
rience through trial and error or take decisions from their peers into 
consideration, as some of them might learn faster than the others. 
Participants’ explicit awareness of all possible alternatives was cru-
cial for the implementation of our social influence task. To further 
enhance participants’ motivation, we informed them that the amount 
they would gain from the experiment would be added to their base 
payment (see the “Reward payment” section below). After partici-
pants had fully understood the task, we took portrait photos of 

them. To avoid emotional arousal, we asked participants to maintain a 
neutral facial expression as in typical passport photos. To pre-
vent potential confusion before the training task, we further in-
formed participants that they would only see photos of the other 
four coplayers without seeing themselves.

The training task contained 10 trials and differed from the main 
experiment in two aspects. First, it used a different set of stimuli 
than those used in the main experiment to avoid any learning 
effect. Second, participants were given a longer response window 
to fully understand every step of the task. Specifically, each trial 
began with the stimuli presentation of two choice alternatives, and 
participants were asked to decide on their Choice 1 (4000 ms) and 
Bet 1 (3000 ms). After the two sequential preference ratings (3000 ms 
each), all Choice 1 from the other four coplayers were displayed under-
neath their corresponding photos (3000 ms). Participants were 
then asked to adjust their choice (Choice 2; 4000 ms) and their bet (Bet 
2; 3000 ms). Last, outcomes of all participants were released (3000 ms), 
followed by a jittered intertrial interval (ITI; 2000 to 4000 ms). 
To help participants familiarize themselves, we orally instructed 
them what to expect and what to do on each phase for the first two 
to three trials. The procedure during day 1 lasted about 1 hour.
Main experiment (day 2)
On the testing day, the five participants came to the MRI build-
ing. After a recap of all the important aspects of the task instruc-
tion, the MRI participant gave the MRI consent and entered the 
scanner to perform the main social influence task, while the 
remaining four participants were seated in the same room adjacent 
to the scanner to perform the task. All computers were interconnect-
ed via the intranet connection. They were further instructed not to 
make any verbal or gestural communications with other partici-
pants during the experiment.

The main experiment consisted of 100 trials and used a different 
pair of stimuli than the training task. It followed the exact descrip-
tion detailed above (see the “Breakdown of the social influence task 
(main study)” section and Fig. 1A). Specifically, each trial began 
with the stimulus presentation of two choice alternatives, and par-
ticipants were asked to decide on their Choice 1 (2500 ms) and Bet 
1 (2000 ms). After the two sequential preference ratings (2000 ms 
each), all Choice 1 from the other four coplayers were displayed 
underneath their corresponding photos (3000 ms). Participants 
were then asked to adjust their choice (Choice 2; 3000 ms) and their 
bet (Bet 2; 2000 ms). Last, outcomes of all participants were released 
(3000 ms), followed by a jittered ITI (2000 to 4000 ms). The proce-
dure during day 2 lasted about 1.5 hours.
Reward payment
All participants were compensated with a base payment of 35 euros 
and the reward that they had achieved during the main experi-
ment. In the main experiment, to prevent participants from care-
less responses on their Choice 1, they were explicitly instructed 
that on each trial, either their Choice 1 or their Choice 2 would 
be used to determine the final payoff. However, this did not 
affect the outcome delivery on the screen. Namely, although on 
some trials participants’ Choice 1 was used to determine their 
payment, only outcomes that corresponded to their Choice 2 ap-
peared on the screen. In addition, when their total outcome was 
negative, no money was deducted from their final payment. 
Overall, participants gained 4.48  ±  4.41 euros after completing 
the experiment. Last, the experiment ended with an informal de-
briefing session.
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Behavioral data acquisition
Stimulus presentation, MRI pulse triggering, and response record-
ing were accomplished with MATLAB R2014b (www.mathworks.
com) and Cogent 2000 (www.vislab.ucl.ac.uk/cogent.php). In the 
behavioral group (as well as during the prescanning training), but-
tons “V” and “B” on the keyboard corresponded to the left and right 
choice options, respectively, and buttons V, B, and “N” correspond-
ed to the bets 1, 2, and 3, respectively. As for the MRI group, a 
four-button MRI-compatible button box with a horizontal button 
arrangement was used to record behavioral responses. Buttons “a” 
and “b” on the button box corresponded to the left and right choice 
options, respectively, and buttons a, b, and “c” corresponded to the 
bets 1, 2, and 3, respectively. To avoid motor artifacts, the position 
of the two choices options was counterbalanced for all participants.

MRI data acquisition and preprocessing
MRI data collection was conducted on a Siemens Trio 3T scanner 
(Siemens, Erlangen, Germany) with a 32-channel head coil. Each 
brain volume consisted of 42 axial slices (voxel size, 2 × 2 × 2 mm3, 
with 1-mm spacing between slices) acquired using a T2*-weighted 
echoplanar imaging (EPI) protocol (repetition time, TR = 2510 ms; 
echo time, TE = 25 ms; flip angle = 40°; field of view = 216 mm) in 
descending order. Orientation of the slice was tilted at 30° to the ante-
rior commissure–posterior commissure (AC-PC) axis to improve 
signal quality in the orbitofrontal cortex (42). Data for each par-
ticipant were collected in three runs with total volumes ranging from 
1210 to 1230, and the first three volumes of each run were discarded 
to obtain a steady-state magnetization. In addition, a gradient echo 
field map was acquired before EPI scanning to measure the magnetic 
field inhomogeneity (TE1 = 5.00 ms, TE2 = 7.46 ms), and a high- 
resolution anatomical image (voxel size, 1 × 1 × 1 mm3) was acquired 
after the experiment using a T1-weighted MPRAGE protocol.

fMRI data preprocessing was performed using SPM12 (Statistical 
Parametric Mapping; Wellcome Trust Centre for Neuroimaging, 
University College London, London, UK). After converting raw 
Digital Imaging and Communications in Medicine (DICOM) images 
to NIfTI (Neuroimaging Informatics Technology Initiative) format, 
image preprocessing continued with slice timing correction using the 
middle slice of the volume as the reference. Next, a voxel displacement 
map (VDM) was calculated from the field map to account for the 
spatial distortion resulting from the magnetic field inhomogeneity 
(43, 44). Incorporating this VDM, the EPI images were then corrected 
for motion and spatial distortions through realignment and unwarping. 
The participants’ anatomical images were manually checked and cor-
rected for the origin by resetting it to the AC-PC. The EPI images 
were then coregistered to this origin-corrected anatomical image. The 
anatomical image was skull-stripped and segmented into gray matter, 
white matter, and cerebrospinal fluid (CSF), using the “Segment” 
tool in SPM12. These gray and white matter images were used in the 
SPM12 DARTEL toolbox to create individual flow fields as well as a 
group anatomical template (44). The EPI images were then normal-
ized to the MNI space using the respective flow fields through the 
DARTEL toolbox normalization tool. A Gaussian kernel of 6-mm 
full width at half maximum was used to smooth the EPI images.

After the preprocessing, we further identified brain volumes that 
(i) excessively deviated from the global mean of the blood oxygen 
level–dependent (BOLD) imaging signals (>1 SD), (ii) showed ex-
cessive head movement (movement parameter/TR > 0.4), or (iii) 
largely correlated with the movement parameters and the first de-

rivative of the movement parameters (R2 > 0.95). This procedure 
was implemented with the “Spike Analyzer” tool (https://github.
com/GlascherLab/SpikeAnalyzer), which returned indices of those 
identified volumes. We then constructed them as additional participant- 
specific nuisance regressors of no interest across all our first-level 
analyses. This implementation identified 3.41 ± 4.79% of all volumes. 
Note that as this procedure was performed per participant, the total 
number of regressors for each participant may differ.

Behavioral data analysis
We tested for participants’ behavioral adjustment after observing 
the instantaneous social information (during Phase 3), by assessing 
their choice switch probability in Phase 4 (how likely participants 
switched to the opposite option) and bet difference in Phase 5 
(Bet 2 magnitude minus Bet 1 magnitude) as a measurement of 
how choice and confidence were modulated by the social informa-
tion. Neither group difference (MRI versus behavioral) nor gender 
difference (male versus female) was observed for the choice switch 
probability (group: F1,914  =  0.14, P  =  0.71; gender: F1,914  =  0.24, 
P = 0.63) and the bet difference (group: F1,914 = 0.09, P = 0.76; gen-
der: F1,914 = 1.20, P = 0.27). Thus, we pulled data altogether to per-
form all subsequent analyses. In addition, trials where participants 
did not give valid responses on either Choice 1 or Bet 1 in time were 
excluded from the analyses. On average, 7.9  ±  7.3% of the entire 
trials were excluded.

We first tested how the choice switch probability and the bet dif-
ference varied as a function of the direction of the group (with and 
against, with respect to each participant’s Choice 1) and the consen-
sus of the group (2:2, 3:1, and 4:0, view of each participant; Fig. 1C) 
within trials. To this end, we submitted the choice switch probabil-
ity and the bet difference to an unbalanced 2 (direction) × 3 (con-
sensus) repeated-measures linear mixed-effect (LME) model. The 
unbalance was due to the fact that data in the 2:2 condition could 
only be used once, and we grouped it into the “against” condition, 
thus resulting in three consensus levels in the against condition and 
two consensus levels in the with condition. Grouping it into the with 
condition did not alter the results. Furthermore, we further tested 
the bet difference depending on whether participants switched or 
stayed on their Choice 2, by performing a 3 (group coherence, 2:2, 
3:1, and 4:0) × 2 (direction, with versus against) × 2 (choice type, 
SwSt) repeated-measures LME models. We constructed LME models 
with different random effect specifications (table S1) and selected 
the best one for the subsequent statistical analyses (Fig. 1, D and E, 
and fig. S2A). We performed similar analyses with data from the 
nonsocial control study (fig. S1, C and D).

We further tested whether it was beneficial for the participants 
to adjust their choice and bet after receiving the instantaneous 
social information; that is, we assessed whether participants’ switch-
ing behavior was elicited by considering social information or driven 
by purely perceptual mismatch (i.e., being confronted with visually 
distinct symbols). We reasoned that if participants were consider-
ing social information in our task, then the accuracy of their Choice 
2 was expected to be higher than that of their Choice 1 (i.e., choosing 
the good option more often). By contrast, if participants’ switching 
behavior was purely driven by perceptual mismatch, then a more 
random pattern ought to be expected, with no difference between 
the accuracy of Choice 1 and Choice 2. To this end, we assessed the 
difference in the accuracy between Choice 1 and Choice 2 (Fig. 1F), 
as well as the difference of the magnitude between Bet 1 and Bet 2 
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(Fig. 1G), using two-tailed paired t tests. We also tested how choice 
accuracy and bet magnitude changed across reversals. We selected a 
window of seven trials (three before and three after reversal, rever-
sal included) to perform this analysis, with data being stacked with 
respect to the reversal (i.e., trial-locked) and averaged per partici-
pant. We submitted the data to a 2 (Choice 1 versus Choice 2 or Bet 
1 versus Bet 2) × 7 (relative trial position, −3, −2, −1, 0, +1, +2, +3) 
repeated-measures LME models with five different random effect speci-
fications, respectively (table S2). When the main effect of position was 
significant, we submitted the data to a post hoc comparison with Tukey’s 
post hoc test correction (fig. S2, B and C). We performed similar analyses 
with data from the nonsocial control study (fig. S1, E and F).

In addition, although we did not intentionally manipulate the 
amount of dissenting social information in the main experiment 
(given the real-time property of our task), the sequence was none-
theless randomly distributed for nearly all participants (Wald- 
Wolfowitz runs test, all P > 0.05). To guard against possible confounding 
effects, we nonetheless tested whether the amount of dissenting 
social information and participants’ behavior was related to task 
structure (time of reversal) and participants’ lapse error. Note that 
the lapse error was defined as choosing one choice option on Choice 
1 when the model strongly favored the alternative (modeled action 
probability ≥ 95%). For example, when the model predicted P(A) of 
Choice 1 was 95% (or higher) yet the participants actually chose op-
tion B, this trial was referred to as a lapse error. We tested the Pearson’s 
correlation between the following pairs of variables for all par-
ticipants and for MRI participants: (i) amount of dissenting social 
information and time of reversal, (ii) amount of dissenting social in-
formation and lapse error, (iii) participants’ switching behavior 
and time of reversal, and (iv) participants’ switching behav-
ior and lapse error. Results indicated no significant relationship 
between any of the above pairs of variables (fig. S2, E and F).

Last, we tested how choice accuracy and bet magnitude changed 
between trials, as a function of choice adjustment on the previous 
trial (Choice 2 SwSt), the relative direction of the group (with versus 
against), and the group consensus (2:2, 3:1, 4:0). That is, we assessed 
the carry-over effect after participants had observed the others’ 
Choice 2 behavior. To this end, we submitted the choice accuracy 
and the bet magnitude to an unbalanced 2 (adjustment) × 2 (direc-
tion) × 3 (consensus) repeated-measures LME model. The unbal-
ance was due to the fact that data in the 2:2 condition could only be 
used once, and we grouped it into the against condition. Grouping 
it into the with condition did not alter the results. We constructed 
LME models with different random effect specifications (table S1) 
and selected the best one for the subsequent statistical analyses 
(Fig. 1, H and I). We performed similar analyses with data from the 
nonsocial control study (fig. S1, H and I).

All statistical tests were performed in R (v3.3.1; www.r-project.
org). All repeated-measures LME models were analyzed with the 
“lme4” package in R. Results were considered statistically signifi-
cant at the level P < 0.05.

Computational modeling
To describe participants’ learning behavior in our social influence 
task and to uncover latent trial-by-trial measures of decision vari-
ables, we developed three categories of computational models and 
fitted these models to participants’ behavioral data. We based all 
our computational models on the simple RL model (5) and progres-
sively include components (Table 1).

First, given the structure of the PRL task, we sought to evaluate 
whether a fictitious update RL model (20) that incorporates the 
anticorrelation structure (see the “Underlying PRL paradigm” 
section) outperformed the simple Rescorla-Wagner (21) RL model 
that only updated the value of the chosen option and the Pearce-
Hall (45) model that used a dynamic learning rate to approximate 
the optimal Bayesian learner. These models served as the baseline 
and did not consider any social information (category 1: M1a, M1b, 
and M1c). On top of category 1 models, we then included the in-
stantaneous social influence (i.e., other coplayers’ Choice 1, before 
outcomes were delivered) to construct social models (category 2: 
M2a, M2b, and M2c). Last, we considered the component of social 
learning with competing hypotheses of value update from observ-
ing others (category 3: M3, M4, M5, M6a, and M6b). The remainder 
of this section explains choice-related model specifications and 
bet-related model specifications (see table S3 for a list of full specifi-
cations). All models were estimated and evaluated under the hierar-
chical Bayesian framework (note S2).
Choice model specifications
In all models, Choice 1 was accounted for by the option values of 
option A and option B

   𝕍  t   = [ V  t  (A ) ,  V  t  (B ) ]  (3)

where  V t indicated a two-element vector consisting of option values 
of A and B on trial t. Values were then converted into action proba-
bilities using a Softmax function (5). On trial t, the action probabil-
ity of choosing option A (between A and B) was defined as follows

   P  t  (A ) =    e    V  t  (A)  ─ 
 e    V  t  (A)  +  e    V  t  (B) 

   =   1 ─  
1 +  e   −( V  t  (A)− V  t  (B)) 

    (4)

For Choice 2, we modeled it as a “switch” (coded as 1) or a “stay” 
(coded as 0) using a logistic regression. On trial t, the probability of 
switching given the switch value was defined as follows

   P  t  (switch ) = ( V  t  (switch ) )  (5)

where  was the inverse logit linking function

  (x ) =   1 ─ 
1 +  e   −x 

    (6)

Note that, in model specifications of the action probability, we 
did not include the commonly used inverse Softmax temperature 
parameter . This was because we explicitly constructed the option 
values of Choice 1 and the switch value of Choice 2 in a design- 
matrix fashion (e.g., Eq. 8; see the text below). Therefore, including 
the inverse Softmax temperature parameter would inevitably give 
rise to a multiplication term, which, as a consequence, would cause 
unidentifiable parameter estimation (24). For completeness, we also 
assessed models with the  parameter, and they performed consis-
tently worse than our models specified here.

The category 1 models (M1a, M1b, and M1c) did not consider 
any social information. In the simplest model (M1a), a Rescorla- 
Wagner model was used to model the Choice 1, with only the cho-
sen value being updated via the RPE (), and the unchosen value 
remaining the same as the last trial.

   
        δ  chosen,C2,t  

  
     =  R  t   −  V  chosen,C2,t  

          V  chosen,C2,t+1         =  V  chosen,C2,t   +  αδ  chosen,C2,t       
 V  unchosen,C2,t+1  

  
     =  V  unchosen,C2,t  

    (7) 
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where Rt was the outcome on trial t and  (0 <  < 1) denoted the 
learning rate that accounted for the weight of RPE in value update. 
A  weight (V) was then multiplied with the values before being 
submitted to Eq. 4 with a categorical distribution, as in

  C  1  t   ∼ Categorical(Softmax(   v    𝕍  t   ) )  (8)

Because there was no social information in M1a, the switch value 
of Choice 2 was composed merely of the value difference of Choice 
1 and a switching bias (i.e., intercept)

   V  t  (switch ) =     bias  C2     +     vdiff  C2    ( V  chosen,C1,t   −  V  unchosen,C1,t  )  (9)

Choice 2 was then modeled with this switch value following a 
Bernoulli distribution

  C2 ∼ Bernoulli( V  t  (switch ) )  (10)

In M1b, we tested whether the fictitious update could improve 
the model performance, as the fictitious update has been successful 
in PRL tasks in nonsocial contexts (20, 27). In M1b, both the chosen 
value and the unchosen value were updated, as in

   

         δ  chosen,C2,t  

  

    =  R  t   −  V  chosen,C2,t  

    
      δ  unchosen,C2,t    

    = −  R  t   −  V  unchosen,C2,t           V  chosen,C2,t+1        =  V  chosen,C2,t   +  αδ  chosen,C2,t  
     

  V  unchosen,C2,t+1  

  

    =  V  unchosen,C2,t   +  αδ  unchosen,C2,t  

   (11)

In M1c, we assessed the Pearce-Hall (45) model that entailed a 
dynamic learning rate

   

         δ  chosen,C2,t  

  

    =  R  t   −  V  chosen,C2,t  

    
         V  chosen,t+1  

  
    =  V  chosen,t   + k  α  t    δ  chosen,C2,t         V  unchosen,C2,t+1        =  V  unchosen,C2,t  

    

                   α  t+1  

  

    = λ ∣  δ  chosen,t   ∣ + (1 − λ )  α  t  

   (12)

where k (0 < k < 1) was the weight of the (dynamic) learning rate 
and  (0 <  < 1) indicated the weight between RPE and the learning 
rate.

Our category 2 models (M2a, M2b, and M2c) tested the role of 
instantaneous social influence on Choice 2, namely, whether ob-
serving choices from the other coplayers contributed to the choice 
switching. As compared with M1 (M1a, M1b, and M1c), only the 
switch value of Choice 2 was modified, as follows

   
 V  t  (switch ) =     bias  C2      

+     vdiff  C2    ( V  chosen,C1,t   −  V  unchosen,C1,t  )         +    against   w .  N  against,t  
    

  (13)

where w.Nagainst,t denoted the preference-weighted amount of dis-
senting social information relative to each participant’s Choice 1 on 
trial t. It was computed on a trial-by-trial fashion as follows

  w .  N  against,t   =   
  ∑ 
s=1

  
K

     w  s,t  
 ─ 

  ∑ 
s=1

  
4
     w  s,t  

  , K = 0, 1, … , 4  (14)

where K indicated the number of opposite choices from the others 
and ws,t was participants’ trial-by-trial preference weight toward the 
other four coplayers. Note that these preference weights were fixed 
parameters based on each participant’s preference toward the oth-

ers when uncovering their choices: The first favored coplayer received 
a weight of 0.75, the second favored coplayer received a weight of 
0.5, and the remaining two coplayers received a weight of 0.25, re-
spectively. They were not modeled as free parameters because doing 
so caused unidentifiable model estimate behavior. All other specifi-
cations of models in this category (M2a, M2b, and M2c) were iden-
tical to models in category 1 (M1a, M1b, and M1c), respectively.

Our category 3 models (M3, M4, M5, M6a, and M6b) assessed 
whether participants learned from their social partners and whether 
they updated vicarious option values through social learning. Note 
that models belonging to category 2 solely considered the instanta-
neous social influence on Choice 2, whereas models in category 3 
tested several competing hypotheses of the vicarious valuation that 
may contribute to Choice 1 on the following trial, in combination 
with individuals’ own valuation processes. In all models within this 
category, the option values of Choice 1 were specified by a weighted 
combination between Vself updated via direct learning and Vother 
updated via social learning

   𝕍  t   =    vself    𝕍  self,t   +    vother    𝕍  other,t    (15)

where

    
 𝕍  self,t   = [ V  self,t  (A ) ,  V  self,t  (B ) ]

    
 𝕍  other,t   = [ V  other,t  (A ) ,  V  other,t  (B ) ]

   (16)

Note that given that M2b was the winning model among catego-
ry 1 and category 2 models (Table 1), we used M2b’s specification 
for the value update of Vself (Eq. 11), so that category 3 models only 
differed on the specification of Vother.

M3 tested whether individuals recruited a similar RL algorithm 
to their own when learning option values from observing others. 
Hence, M3 assumed participants to update values “for” the others 
using the same fictitious update rule for themselves

   

           δ  s,chosen,C2,t  

  

   =  R  s,t   −  V  s,chosen,C2,t  , s = 1, 2, 3, 4

     
      δ  s,unchosen,C2,t    

   = −  R  s,t   −  V  s,unchosen,C2,t            V  s,chosen,C2,t+1       =  V  s,chosen,C2,t   +  α  o    δ  s,chosen,C2,t  
     

  V  s,unchosen,C2,t+1  

  

   =  V  s,unchosen,C2,t   +  α  o    δ  s,unchosen,C2,t  

    
   
   
  (17)

where s denoted the index of the four other coplayers and αo was the 
learning rate for the others. These option values from the four co-
players were then preference-weighted and summed to formulate 
Vother, as follows

   
 V  other,t+1  (A ) =   ∑ 

s=1
  

4
     w  s,t    V  s,t+1  (A)

    
 V  other,t+1  (B ) =   ∑ 

s=1
  

4
     w  s,t    V  s,t+1  (B)

    (18)

where ws,t was participants’ preference weight. To ensure that the 
corresponding value-related parameters (vself and vother in Eq. 15) 
were comparable, Vother was further normalized to lie between −1 
and 1 with the (x) function defined in Eq. 6

   
 V  other,t+1  (A ) = 2( V  other,t+1  (A ) ) − 1

    
 V  other,t+1  (B ) = 2( V  other,t+1  (B ) ) − 1

    (19)

One may argue that having four independent RL agents as in M3 
was cognitively demanding: To accomplish so, participants had to 
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track and update each other’s individual learning processes together 
with their own valuation (together 25 units of information). We, 
therefore, constructed three additional models that used simpler 
but distinct pathways to update vicarious values via social learning. 
In essence, M3 considered both choice and outcome to determine 
the action value. We then asked whether using either choice or out-
come alone may perform well as, or even better than, M3. Following 
this assumption, we constructed (i) M4 that updated Vother using 
only the others’ action preference, (ii) M5 that considered the others’ 
current outcome to resemble the value update via observational 
learning, and (iii) M6a that tracked the others’ cumulative out-
come to resemble the value update via observational learning.

In M4, other players’ action preference () is derived from the 
choice history over the last three trials using the cumulative distribu-
tion function of the beta distribution at the value of 0.5 (I0.5). That is

   
   s,t  (A ) =  I  0.5  (1 +   ∑ 

t=T−2
  

T
   C  2  B,s,t  , 1 +   ∑ 

t=T−2
  

T
   C  2  A,s,t  )     

   s,t  (B ) = 1 −    s,t  (A)
    

(20)

where s denoted the index of the four other coplayers and t denoted 
the trial index from T − 2 to T. To illustrate, if one coplayer chose 
option A twice and option B once in the last three trials, then the 
action preference of choosing A for him/her was as follows: I0.5(fre-
quency of B + 1, frequency of A + 1) = I0.5(0.5, 1 + 1, 2 + 1) = 0.6875. 
Vother was computed on the basis of these action preferences

   
 V  other,t+1  (A ) =   ∑ 

s=1
  

4
     w  s,t      s,t  (A)

    
 V  other,t+1  (B ) =   ∑ 

s=1
  

4
     w  s,t      s,t  (B)

    (21)

where ws,t was participants’ preference weight and s denoted the in-
dex of the four other coplayers. Similar to M3, the computation of 
Vother here was also preference-weighted and summed. The values 
were similarly normalized using Eq. 19.

By contrast, M5 tested whether participants updated Vother using 
only each other’s reward on the current trial, which was equivalent 
to the standard Rescorla-Wagner model with  = 1, indicating no 
trial-by-trial learning

   
 V  other,t+1  (A ) =   ∑ 

s=1
  

 K  A  
     w  s,t    R  s,t  ,  K  A   = 0, 1, … , 4

    
 V  other,t+1  (B ) =   ∑ 

s=1
  

4− K  A  
    w  s,t    R  s,t  

    (22)

where ws,t was participants’ preference weight, s denoted the index of 
the four other coplayers, t denoted the trial index from T − 2 to T, and KA 
denoted the number of coplayers who decided on option A on trial t. 
Similar to M3, the computation of Vother here was also preference- 
weighted and summed. These values were then normalized using Eq. 19.

Moreover, M6a assessed whether participants tracked cumulated 
reward histories over the last few trials instead of monitoring only 
the most recent outcome of the others. A discounted reward history 
over the recent past (e.g., the last three trials) has been a relatively 
common implementation in other RL studies in nonsocial contexts 
(22, 46). By testing four window sizes of trials (i.e., two, three, four, 

or five) and using a nested model comparison, we decided on a window 
of three past trials to accumulate the other coplayers’ performance

   
 V  other,t+1  (A ) =   ∑ 

s=1
  

 K  A  
     ∑ 
t=T−2

  
T
     w  s,t       T−i   R  s,i  ,  K  A   = 0, 1, … , 4

     
 V  other,t+1  (B ) =   ∑ 

s=1
  

4− K  A  
    ∑ 
t=T−2

  
T
     w  s,t       T−i   R  s,i  

    
(23)

where  (0 <  < 1) denoted the rate of exponential decay and all 
other notions were as in Eq. 22. Similar to M3, the computation of 
Vother here was also preference-weighted and summed. The values 
were then normalized using Eq. 19.

Last, given that M6a was the winning model among all the mod-
els above (M1 to M6a) indicated by model comparison (see below 
model selection; Table 1), we further assessed in M6b whether Bet 1 
contributed to the choice switching on Choice 2, as follows

  
          V  t  (switch ) =     bias  C2       

+     vdiff  C2    ( V  chosen,C1,t   −  V  unchosen,C1,t  )         +    against   w .  N  against,t   +    bet1   Bet  1  t  
    (24)

Note that in M6a/M6b, Vother differed from Vself in practice. On 
trial t, Vself of a punished option might largely decrease given the 
negative RPE, whereas Vother may not be vastly affected because of 
the others’ previous successes [e.g., Vother(blue); Fig. 2C; albeit a loss 
on trial t, the cumulative reward history was still positive, indicating 
that the cumulative performance was still reliable]. Both Vself and 
Vother spanned within their range (−1 to 1; Fig. 2D) with a slightly 
moderate correlation (r = 0.38 ± 0.097 across participants; Fig. 3A), 
and they jointly contributed to the action probability of Choice 1.
Bet model specifications
In all models, both Bet 1 and Bet 2 were modeled as ordered-logistic 
regressions that are often used for quantifying ordered discrete vari-
ables, such as Likert-scale questionnaire data (24). We applied the 
ordered- logistic model because the bets in our study indeed in-
ferred an ordinal feature. Namely, betting on three was higher than 
betting on two, and betting on two was higher than betting on one, 
but the difference between the bets of three and one (i.e., a difference 
of two) was not necessarily twice as the difference between the bets 
of three and two (i.e., a difference of one). Hence, we sought to 
model the distance (decision boundary) between them. Moreover, 
we hypo thesized a continuous computation process of bet utilities 
when individuals were placing bets, which satisfied the general as-
sumption of the ordered-logistic regression model.

There were two key components in our bet models, the continuous 
bet utility Ubet and the set of boundary thresholds . Specifically, the 
bet utility Ubet varied between K − 1 thresholds (1,2, …, K−1) thresholds 
to predict bets. Since there were three bet levels in our task (K = 3), 
we introduced two decision thresholds, 1 and 2 (where 2 > 1). 
Hence, the predicted bets (bêt) on trial t were represented as follows

   b  ̂  e   t  i,t   =  
⎧

 
⎪

 ⎨ 
⎪

 
⎩

   
1, if − ∞ <  U   bet  i,t     <    1  

   2, if    1   <  U   bet  i,t     <    2   , i = 1, 2    
3, if    2   <  U   bet  i,t     < + ∞

     (25)

where i indicated either Bet 1 or Bet 2. Because there were only 
two levels of threshold, for simplicity, we set 1 = 0 and 2 =  
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(where  > 0). To model the actual bets, a logistic function (Eq. 6) 
was used to obtain the action probability of each bet, as follows

    
⎧

 
⎪

 ⎨ 
⎪

 
⎩

   
P( bet  i,t   = 1 ) = (−  U   bet  i,t    )

   P( bet  i,t   = 2 ) = ( −  U   bet  i,t     ) − (−  U   bet  i,t     ) , i = 1, 2     
P( bet  i,t   = 3 ) = 1 − ( −  U   bet  i,t    )

     (26)

The utility Ubet1 was composed of a bet bias and the value differ-
ence between the chosen option and the unchosen option

   U  bet1,t   =     bias  B1     +     vdiff  B1    ( V  chosen,C1,t   −  V  unchosen,C1,t  )  (27)

The rationale was that the larger the value difference between the 
chosen and the unchosen options, the more confident individuals 
were expected to be, hence placing a higher bet. This utility Ubet1 
was kept identical across all models (M1a to M6b), and Bet 1 was 
modeled as follows

  B  1  t   ∼ OrderedLogistic( U  bet1,t   ∣ )  (28)

In addition, Bet 2 was modeled as the bet change relative to Bet 
1. Therefore, the utility Ubet2 was constructed on the basis of Ubet1. 
In all nonsocial models (M1a, M1b, and M1c), the bet change term 
was represented by a bet change bias (i.e., intercept), depending on 
whether participants had a switch or stay on their Choice 2

    U  bet2,t   =  {    
 U  bet1,t   +     bias  stay    , if C1 = C2

    
   U  bet1,t   +     bias  switch    , if C1 ≠ C2

    (29)

In all social models (M2a to M6b), regardless of the observational 
learning effect, the bet change term was specified by the instantaneous 
social information together with the bias, depending on whether 
participants had a switch or stay on their Choice 2

    U  bet2,t   =  {    
 U  bet1,t   +  β   with  stay     w .  N  with,t   +  β  against    stay     w .  N  against,t  , if C1 = C2

      
  U  bet1,t   +  β   with  switch     w .  N  with,t   +  β   against  switch     w .  N  against,t  , if C1 ≠ C2

     
   
  (30)

with

   

w .  N  against,t   =   
  ∑ 
s=1

  
K

     w  s,t  
 ─ 

  ∑ 
s=1

  
4
     w  s,t  

  , K = 0, 1, … , 4

    

   w .  N  with,t   =   
  ∑ 
s=1

  
4−K

    w  s,t  
 ─ 

  ∑ 
s=1

  
4
     w  s,t  

  

    (31)

where K indicated the number of opposite choices from the 
others and ws,t was participants’ trial-by-trial preference weight to-
ward the other four coplayers. Note that, however, despite the high 
negative correlation between w.Nwith and w.Nagainst, the parameter 
estimation results showed that the corresponding effects (i.e., with 
and against) did not rely on each other (r = 0.04, P > 0.05). As shown 
in Fig. 2H, the corresponding parameters showed independent con-

tributions to bet changes during the adjustment. In addition, we 
constructed two other models using either w.Nwith or w.Nagainst 
alone, but both models’ performance markedly reduced than in-
cluding both of them [∆LOOIC (leave-one-out information criterion 
relative to the winning model) > 1000]. Last, the utility Ubet2 was 
kept identical across all social models (M2a to M6b), and Bet 2 was 
modeled as follows

  B  2  t   ∼ OrderedLogistic( U  bet2,t   ∣ )  (32)

MRI data analysis
Deriving internal computational signals
On the basis of the winning model (Table 1) and its parameter esti-
mation (Fig. 2, E to H), we derived trial-by-trial computational signals 
for each MRI participant using the mean of the posterior distribu-
tion of the parameters. We used the mean rather than the mode 
(i.e., the peak resulted from kernel density estimate) because in 
Markov chain Monte Carlo, especially Hamiltonian Monte Carlo 
(HMC) implemented in Stan, the mean is much more stable than 
the mode to serve as the point estimate of the entire posterior distri-
bution (24). As we modeled all parameters as normal distributions, 
the posterior mean and the posterior mode were highly correlated 
(r = 0.99, P < 1.0 × 10−10). For each MRI participant, we derived the 
following trial-by-trial variables and behaviors: Vself, Vother, w.
Nagainst, Choice 2 behavior (SwSt), Ubet1, Ubet2, and RPE.
First-level analysis
fMRI data analyses were performed using SPM12. We conducted 
model-based fMRI analyses (20, 25) containing the computational 
signals described above. We set up two event-related GLMs (GLM 1 
and GLM 2) to test the neural correlates of decision variables.

GLM 1 assessed the neural representations of valuation resulted 
from participants’ direct learning and observational learning in 
Phase 1, as well as the instantaneous social influence in Phase 3. The 
first-level design matrix in GLM 1 consisted of constant terms, nui-
sance regressors identified by the Spike Analyzer, and the following 
22 regressors: 5 experimentally measured onset regressors for each 
cue (cue of Choice 1: 0 s after trial began; cue of Bet 1: 2.92 s after 
trial began; cue of Choice 2: 12.82 s after trial began; cue of Bet 2: 
16.25 s after trial began; cue of outcome: 21.71 s after trial began; all 
the timing here corresponded to the mean onsets for each cue across 
trials and participants); 6 parametric modulators (PMs) of each cor-
responding cue (Vself,chosen and Vother,chosen, belonging to the cue of 
Choice 1; w.Nagainst belonging to the cue of Choice 2; Ubet1 and Ubet2, 
belonging to the cue of Bet 1 and Bet 2, respectively; and RPE be-
longing to the cue of outcome); 5 nuisance regressors accounted for 
all of the “no-response” trials (missing trials) of each cue; and 6 
movement parameters. Note that Vother,chosen was orthogonalized 
with respect to Vself,chosen. This allowed us to obtain as much vari-
ance as possible on the Vself,chosen regressor, and then any additional 
(explainable) variance would be accounted for by the Vother,chosen 
regressor (47). In addition, we intentionally did not include 
the actual reward outcome at the outcome cue. This was because (i) 
the RPE and the reward outcome are known to be correlated in 
goal-directed learning studies using model-based fMRI and (ii) we 
sought to explicitly verify RPE signals by its hallmarks using the 
region of interest (ROI) time series extracted from each participant 
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given the second-level RPE contrast (see the “Follow-up ROI 
analysis” section).

GLM 2 was set up to examine the neural correlates of choice 
adjustment in Phase 4. To this end, GLM 2 was identical to GLM 1, 
except that the PM regressor of w.Nagainst under the onset cue of 
Choice 2 was replaced by the PM regressor of SwSt (switch  =  1, 
stay = −1). In addition, albeit that we showed no pattern between 
participants’ behavior and task structure (fig. S2, E and F), we in-
cluded each participant’s time of reversal and their lapse error as 
covariates in GLM 1 and GLM 2, resulting in two new GLMs, GLM 3 
and GLM 4. Given the noncorrelation between variables of interest 
and the task structure, significant clusters resulted from GLM 3 
and GLM 4 were nearly identical with those from GLM 1 and GLM 2, 
respectively.
Second-level analysis
The resulting  images from each participant’s first-level GLMs 
were then used in random-effects group analyses at the second lev-
el, using one-sample two-tailed t tests for significant effects across 
participants. To correct for multiple comparisons of functional im-
aging data, we used the threshold-free cluster enhancement (TFCE) 
(48) implemented in the TFCE Toolbox (dbm.neuro.uni-jena.de/
tfce/). TFCE is a cluster-based thresholding method that aims to 
overcome the shortcomings of choosing an arbitrary cluster size 
(e.g., P < 0.001, cluster size k = 20) to form a threshold. The TFCE 
procedure took the raw statistics from the second-level analyses and 
performed a permutation-based nonparametric test (i.e., 5000 per-
mutations in the current study) to obtain robust results. In addition, 
given our hypotheses and according to existing evidence that vmPFC 
encodes experiential value signals from direct learning (9) and that 
ACC tracks vicarious value signals from social learning (8, 12, 32), 
we performed small volume corrections for the value related con-
trast using 10-mm search volumes around the peak MNI coordi-
nates of the vmPFC (x = 2, y = 46, z = −8) and the ACC (x = 2, 
y = 14, z = 30) reported in the corresponding studies with the TFCE 
correction at P < 0.05 (Fig. 3B). For the otherwise whole-brain anal-
yses, we performed whole-brain TFCE correction at P < 0.05, FWE 
(family-wise error) corrected (Fig. 3C and figs. S4 and S5).
Follow-up ROI analysis
Depending on the hypotheses, the research question, and the corre-
sponding PM regressors, we used two types of follow-up ROI analyses: 
the time series estimates and percent signal change (PSC) estimates. 
In both types of ROI analyses, participant-specific masks were 
created from the second-level contrast. We applied a previously 
reported leave-one-out procedure (20) to extract cross-validated 
BOLD time series. This was to provide an independent criterion 
for ROI identification and thus ensured statistical validity. For 
each participant, we first defined a 10-mm search volume around 
the peak coordinate of the second level contrast re-estimated 
from the remaining n − 1 participants (threshold: P < 0.001, un-
corrected); within this search volume, we then searched for each 
participant’s nearest individual peak and created a new 10-mm 
sphere around this individual peak as the ROI mask. Last, supra-
threshold voxels in the new participant-specific ROI were used for 
both ROI analyses.

The ROI time series estimates were applied when at least two PMs 
were associated with each ROI. Namely, we were particularly inter-
ested in how the time series within a specific ROI correlated with all 
the PM regressors. In the current studies, we defined three ROIs to 
perform the time series estimates: vmPFC, ACC, and VS/NAcc.

We followed the procedure established by previous studies 
(12, 26) to perform the ROI time series estimates. We first extracted 
raw BOLD time series from the ROIs. The time series of each par-
ticipant was then time-locked to the beginning of each trial with a 
duration of 30 s, where the cue of Choice 1 was presented at 0 s, the 
cue of Bet 1 was presented at 2.92 s, the cue of Choice 2 was dis-
played at 12.82 s, the cue of Bet 2 was displayed at 16.25 s, and the 
cue of outcome was presented at 21.71 s. Afterward, ROI time series 
were upsampled to a resolution of 250 ms (1/10 of TR) using two- 
dimensional cubic spline interpolation, resulting in a data matrix of 
size m × n, where m was the number of trials and n was the number 
of the upsampled time points (i.e., 30 s/250 ms = 120 time points). 
A linear regression model containing the PMs was then estimated at 
each time point (across trials) for each participant. Note that, al-
though the linear regression here took a similar formulation as the 
first-level GLM, it did not model any specific onset; instead, this 
regression was fitted at each time point within the entire trial across 
all trials. The resulting time courses of effect sizes (regression coef-
ficients or  weights) were lastly averaged across participants.

To test the group-level significance of the above ROI time series 
analysis, we used a nonparametric permutation procedure. For the 
time sources of effect sizes ( weights) for each ROI, we defined a 
time window of 3 to 7 s after the corresponding event onset, during 
which the BOLD response was expected to peak. In this time win-
dow, we randomly flipped the signs of the time courses of  weights 
for 5000 repetitions to generate a null distribution and assessed 
whether the mean of the generated data from the permutation pro-
cedure was smaller or larger than 97.5% of the mean of the empiri-
cal data, as the P value.

Further, the PSC estimates were applied when only one PM was 
associated with each ROI. In particular, we tested whether there was 
a linear trend of the PSC for each ROI as a function of the PM. In the 
current study, we defined seven ROIs to perform the PSC estimates. 
Among them, four ROIs were associated with the PM regressor of 
w.Nagainst, being the rTPJ, the ACC/posterior medial frontal cortex 
(pMFC), the right anterior insula (aINS), and the frontopolar cortex 
(FPC); two ROIs were associated with the PM regressor of SwSt, being 
the left dlPFC and the ACC/pMFC; and one ROI was associated with 
the inverse contrast of SwSt (i.e., stay versus switch), being the vmPFC.

To compute the PSC, we used the “rfxplot” toolbox (49) to ex-
tract the time series from the above ROIs. The rfxplot toolbox fur-
ther divided the corresponding PMs into different bins (e.g., in the 
case of two bins, PMs were split into the first 50% and the second 
50%) and computed the PSC for each bin, which resulted in a p × q 
PSC matrix, where p was the number of participants and q was the 
number of bins. To test for significance, we performed a simple 
first-order polynomial fit using the PSC as a function of the binned 
PM and tested whether the slope of this polynomial fit was signifi-
cantly different from zero using two-tailed one sample t tests.
Functional connectivity analysis
We conducted two types of functional connectivity analyses (28) in 
the current study, the PPI and the PhiPI, to assess the functional 
network using fMRI. In both types of connectivity analyses, the 
seed brain regions were determined on the basis of the activations 
from the earlier GLM analyses, and we extracted cross-validated 
BOLD time series from each corresponding ROI using the leave-
one-out procedure described above.

The PPI analysis aims to uncover how the functional connectiv-
ity between BOLD signals in a particular ROI (seed region) and 
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BOLD signals in the (to-be-detected) target region(s) is modulated 
by a psychological variable. We used as a seed the entire BOLD time 
series from a 10-mm spherical ROI in the rTPJ, centered at the peak 
coordinates from the PM contrast of w.Nagainst (threshold: P < 0.001, 
uncorrected), which was detected at the onset cue of the second 
choice. Next, we constructed the interaction regressor of the PPI 
analysis (i.e., the regressor of main interest) by combining the rTPJ 
ROI signals with the SwSt (switch = 1, stay = −1) variable that took 
place at the onset cue of Choice 2. We first normalized the physio-
logical and psychological terms and then multiplied them together, 
further orthogonalizing their product to each of the two main effects. 
These three regressors (i.e., the interaction, the BOLD time series of 
the seed region, and the modulating psychological variable) were 
lastly mean-corrected and then entered into the first-level PPI 
design matrix. To avoid possible confounding effects, we further 
included all the same nuisance regressors as the above first-level 
GLMs: five nuisance regressors accounted for all the no-response 
trials (missing trials) of each event cue, six movement parameters, 
and additional regressors of interest identified by the Spike Analyzer. 
The resulting first-level interaction regressor from each participant 
was then submitted to a second-level t test to establish the group-level 
connectivity results, with whole-brain TFCE correction at P < 0.05, 
FWE corrected (Fig. 4, A to C).

The PhiPI analysis follows the same principles as the PPI analy-
sis, except that the psychological variable in the PPI regressors is 
replaced by the BOLD time series from a second seed ROI. For the 
interaction term, we first normalized the BOLD time series of the 
two seed regions and then multiplied them together, further or-
thogonalizing their product to each of the two main effects. The 
three regressors (i.e., two main-effect terms and their interaction) 
were lastly mean-corrected and then entered into the first-level 
PhiPI design matrix.

We performed two PhiPI analyses. In the first PhiPI, we used as 
seed regions the entire BOLD time series in two 10-mm spherical 
ROIs in the vmPFC (seed 1) and the ACC (seed 2), both of which 
were detected at the cue of Choice 1 from the PMs of Vself and Vother, 
respectively. The design matrix of the first PhiPI analysis thus con-
sisted of the interaction term between vmPFC and ACC and the two 
main-effect regressors with the BOLD time series of vmPFC and 
ACC, respectively. In the second PhiPI, we seeded with the entire 
BOLD time series from an identical 10-mm spherical ROI in the 
rTPJ (seed 1) as described in the above PPI analysis and from a 10-mm 
spherical ROI in the left dlPFC (seed 2), which was identified at the 
cue of Choice 2 from the contrast of choice adjustment (switch > 
stay). The design matrix of the second PhiPI analysis thus consisted 
of the interaction term between rTPJ and left dlPFC and the two 
main-effect regressors with the BOLD time series of rTPJ and left 
dlPFC, respectively. In both PhiPI analyses, we further included all 
the same nuisance regressors as the above first-level GLMs to avoid 
possible confounding effects. The resulting first-level interaction 
regressor from each participant was then submitted to a second-level 
t test to establish the group-level connectivity results, with whole-
brain TFCE correction at P < 0.05, FWE corrected (Fig. 4, E to I, and 
fig. S6A).

SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at http://advances.sciencemag.org/cgi/
content/full/6/34/eabb4159/DC1

View/request a protocol for this paper from Bio-protocol.
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