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Abstract
Aberrant belief updating due to misestimation of uncertainty and an increased perception of the world as volatile (i.e., 
unstable) has been found in autism and psychotic disorders. Pupil dilation tracks events that warrant belief updating, likely 
reflecting the adjustment of neural gain. However, whether subclinical autistic or psychotic symptoms affect this adjustment 
and how they relate to learning in volatile environments remains to be unraveled. We investigated the relationship between 
behavioral and pupillometric markers of subjective volatility (i.e., experience of the world as unstable), autistic traits, and 
psychotic-like experiences in 52 neurotypical adults with a probabilistic reversal learning task. Computational modeling 
revealed that participants with higher psychotic-like experience scores overestimated volatility in low-volatile task periods. 
This was not the case for participants scoring high on autistic-like traits, who instead showed a diminished adaptation of 
choice-switching behavior in response to risk. Pupillometric data indicated that individuals with higher autistic- or psychotic-
like trait and experience scores differentiated less between events that warrant belief updating and those that do not when 
volatility was high. These findings are in line with misestimation of uncertainty accounts of psychosis and autism spectrum 
disorders and indicate that aberrancies are already present at the subclinical level.
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Making good decisions requires learning about the proba-
bilistic risks1 associated with different choices, i.e., learn-
ing which choices are most likely associated with a positive 

outcome, and updating beliefs about these risks if they 
change. To illustrate, imagine Lisa, who loves apples. There 
are two grocery stores in Lisa’s neighborhood, store A and 
store B, and over time Lisa has learned that the probability 
to obtain good apples, i.e., the risk, is approximately 80% 
at store A but only 20% at store B. Hence, she will continue 
shopping at store A. Unbeknownst to Lisa, one day the own-
ers of both stores swap suppliers, resulting in better apples 
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now being more likely at store B than store A. Lisa will 
have to learn about this change in risk through experience 
and adapt her behavior accordingly if she wants to continue 
making good decisions. The ability to make good decisions 
while taking the statistical properties of the environment, 
including potential changes, into account can be impaired 
in psychiatric disorders. Accordingly, maladaptive and 
increased choice-switching during reversal learning tasks 
(where the risk associated with the choice options reverses 
over time) has been observed in both autism spectrum dis-
orders (D'Cruz et al., 2013; Mussey et al., 2015; Solomon 
et al., 2011) and psychotic disorders, such as schizophrenia 
(Culbreth et al., 2016; Kaplan et al., 2016; Li et al., 2014; 
Murray et al., 2008; Schlagenhauf et al., 2014; Waltz et al., 
2013). In these tasks, similar to the example of Lisa, par-
ticipants are presented with different choice options that are 
associated with a positive outcome with a specific probabil-
ity or risk, but this risk changes over time. This introduces 
several levels of uncertainty to the task environment. First, 
there is the irreducible risk of a choice-outcome associa-
tion (e.g., an 80:20 chance of a positive outcome following 
choice of option A). Second, because this risk is unknown 
and has to be learned through experience (by making choices 
and observing the outcome), there is estimation uncertainty, 
i.e., uncertainty about the accuracy of one’s own risk estima-
tion. Estimation uncertainty is highest in the beginning of 
a new learning sequence and can additionally be increased 
by volatility of the learning environment, which is the rate 
at which risk changes (e.g., risk might change from 80:20 
to 20:80 every 12 ± 5 task trials). If volatility is high, risk 
changes often and unpredictably; if it is low, such changes 
happen more rarely.

The findings of maladaptive and increased choice-
switching during reversal learning tasks in autism and 
schizophrenia may be explained by an overestimation of 
this volatility (Cole et al., 2020; Deserno et al., 2020; Law-
son et al., 2017). Evidently, an elevated belief about vola-
tility may increase a person’s tendency to switch between 
two choices, as the probability for obtaining a reward for 
one choice over another might change over time. Conse-
quentially, beliefs about risk are updated at a higher rate, 
and behavior becomes hyperflexible (Deserno et al., 2020). 
However, some findings imply that individuals with autism 
do not overestimate volatility per se but are more sensitive 
to it, with impaired performance under volatile as opposed 
to stable conditions (Goris et al., 2020; Robic et al., 2015). 
In addition, choice behavior is affected by the accuracy 
with which risk is learned and represented in the first place, 
which seems to be diminished in patients with schizophre-
nia (Murray et al., 2008; Waltz et al., 2013; Weickert et al., 
2010) and individuals with autism (Solomon et al., 2015). 
Taken together, this indicates aberrancies in the representa-
tion and processing of different types of uncertainty in both 

clinical groups. Interestingly, misestimation of uncertainty 
and skewed belief updating have been proposed to play a 
major role in the development of symptoms in both autism 
and psychotic disorders within the Bayesian brain frame-
work (Fletcher & Frith, 2009; Van de Cruys et al., 2014; 
van Schalkwyk et al., 2017). Specifically, symptoms may 
arise from false inferences about the world, which in turn 
are caused by alterations in ascribing uncertainty to prior 
beliefs and new sensory information (Adams et al., 2013; 
Powers et al., 2017). This may lead to delusions and hal-
lucinations in psychosis (Adams et al., 2013; Fletcher & 
Frith, 2009) and may cause symptoms of sensory overload 
and oversensitivity to sensory stimulation in autism (Law-
son et al., 2014).

Subjective representations of the different uncertain-
ties that characterize a task environment can be captured 
with cognitive-computational models fitted to observed 
behavior, e.g., Bayesian inference models, such as the 
Hidden Markov Model (HMM), which has successfully 
been applied to reversal learning tasks (Hämmerer et al., 
2019; Schlagenhauf et al., 2014). In the HMM, subjective 
volatility is reflected by the transition probability, which 
describes the probability to switch between different state 
beliefs about risk within the task. On any given task trial, a 
state belief reflects the belief of being in a certain state of 
the task, e.g., one where option B is more beneficial than 
option A with an associated risk of 80:20. Based on those 
state beliefs, two task-relevant trial-wise latent variables 
can be derived: choice uncertainty and Bayesian surprise. 
Choice uncertainty reflects the degree of uncertainty sur-
rounding the belief that the choice made on a given trial 
will lead to a positive outcome. It is high under high risk, 
i.e., when the probability of a positive outcome follow-
ing a particular choice is similar to the probability of a 
negative outcome, and when estimation uncertainty of the 
current risk is high (e.g., at the beginning of a new learn-
ing sequence or under high volatility). Bayesian surprise 
expresses the extent to which a current state belief should 
be updated in the face of new evidence, i.e., a new choice-
outcome observation, and is particularly high under high 
volatility (Hämmerer et al., 2019) where rapid changes 
in risk can result in very unexpected outcomes follow-
ing previously beneficial choices. Both uncertainty and 
surprise can prompt belief updating, indicating a general 
need to “learn more” (to reduce uncertainty) and “how 
much more” (depending on the size of the surprise), 
respectively.

Neurobiologically, uncertainty is thought to be encoded 
by neuromodulatory systems, where contextual change 
resulting from volatility may specifically be signaled by nor-
epinephrine (Friston et al., 2006; Yu & Dayan, 2005). This 
fits well with accounts linking norepinephrinergic activity 
in the locus coeruleus (the LC-NE system) to explorative 
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behavior (Aston-Jones & Cohen, 2005), given that contex-
tual change promotes belief updating through exploration 
and learning. Activity in the LC-NE system can be indexed 
through pupil size (Joshi et al., 2016; Rajkowski et al., 1994; 
Samuels & Szabadi, 2008), which in turn has been found to 
respond to (choice) uncertainty (Kreis et al., 2021; Nassar 
et al., 2012), volatility (Browning et al., 2015; Lawson et al., 
2017), surprise, and belief updating (Hämmerer et al., 2019; 
Preuschoff et al., 2011). This response possibly reflects an 
upregulation of neural gain and learning (Eldar et al., 2013) 
to reduce uncertainty about current task states and update 
beliefs accordingly. Pupil responses in individuals with 
autism (Lawson et al., 2017) or schizophrenia (Kreis et al., 
2021; Steinhauer et al., 1979; Steinhauer & Zubin, 1982), 
however, seem to scale less with uncertainty or surprise, 
suggesting a reduced ability to differentiate events that war-
rant a belief update from those that do not and to regulate 
neural gain accordingly. Notably, the extent to which pupil 
size scales with learning signals, such as choice uncertainty 
and Bayesian surprise, may depend on the task environ-
ment. In a volatile task environment, high choice uncertainty 
may be attributed primarily to estimation uncertainty, i.e., 
limited knowledge about the current risk associated with 
the different choice options. Hence, more attention may be 
devoted to the presented outcomes and pupil size may track 
choice uncertainty more closely. In a stable task environ-
ment, high choice uncertainty may be attributed primarily 
to risk. Because this risk, once learned, is irreducible, new 
outcomes may be less informative and pupil size may scale 
less with choice uncertainty. The same is true for Bayesian 
surprise, which may indicate a change in risk under volatile 
conditions but might simply reflect task-inherent statistical 
deviations under stable conditions.

The diminished pupil responses to uncertainty and 
surprise that have been observed in autism and schizo-
phrenia may be caused by a failure to represent such task 
structures appropriately (Hämmerer et al., 2019), e.g., by 
misestimating risk, enhanced estimation uncertainty due to 
diminished learning, or overestimation of volatility, which 
renders all new events similarly surprising and relevant for 
belief updating and learning. It is unclear to what extent 
these findings translate to neurotypical populations vary-
ing naturally on autistic- and psychotic-like symptoms 
(Abu-Akel et al., 2015; Yung et al., 2009) and whether 
the effects scale with symptom load. The study of subclini-
cal populations is essential when evaluating the potential 
role of uncertainty misestimation for symptom develop-
ment as described above. Furthermore, findings in patient 
samples may be tainted by the effects of anticholinergic 
medication on pupil size (Naicker et al., 2016). Hence, the 
present study tested whether autistic- and psychotic-like 
traits and experiences assessed in a neurotypical sample 
are associated with similarly reduced pupil responses to 

events that should promote belief updating. Such an asso-
ciation may indicate an increased exploratory processing 
style, possibly resulting from elevated subjective volatil-
ity. Using a probabilistic prediction task with different 
volatility and risk conditions, latent computational vari-
ables (subjective volatility, choice uncertainty, Bayesian 
surprise) were derived from computational models and 
tested for their relationship with trait and experience 
scores and with changes in pupil size. Trait and experi-
ence scores as well as task conditions were further inves-
tigated in their relation to observable behavior, such as 
accuracy of and switching between predictions, both of 
which were expected to differ depending on the degrees of 
volatility and risk. Interaction effects between these task-
related uncertainty conditions and trait scores would then 
help to clarify whether different traits are related to issues 
in dealing with volatility (e.g., reflected in particularly 
decreased performance in the volatile condition), mises-
timation of volatility (e.g., reflected in similar amounts 
of switching under more and less volatile conditions), or 
misestimation of risk (e.g., reflected in similar amounts of 
switching under high and low risk conditions). Working 
memory capacity was evaluated to ensure that trait-related 
differences in probabilistic learning were not driven by 
differences in executive functioning and working memory 
resources, which have been linked to learning about prob-
abilities and task structures (Deserno et al., 2020; Waltz 
& Gold, 2007).

Method

Participants

Participants were recruited through pamphlets, social media, 
and from university classes. Inclusion criteria were: (1) 
18–60 years of age; (2) normal or corrected-to-normal eye-
sight; (3) no history of neurological disorders; (4) no acute 
psychiatric disorder, (5) no substance dependence, and (6) 
no intake of any psychoactive medication or recreational 
drug within 3 months prior to the assessment. The final sam-
ple consisted of 52 individuals and is described in Table 1. 
The sample size was based on a power analysis (α = 0.05, 
two-sided, 1-β = 0.8) leaned on recent findings of an asso-
ciation between pupil response to uncertainty and perfor-
mance in a volatile task environment (r = 0.62, N = 22; de 
Berker et al., 2016). Effect size and final sample size were 
slightly reduced (to 0.4) and increased (to N = 52) respec-
tively to account for publication bias and take potential 
participant exclusion due to eye-tracking data quality into 
account. For all participants, written, informed consent was 
obtained prior to the assessment. The study was conducted 
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in accordance with the guidelines of the Declaration of Hel-
sinki and approved by the internal ethics committee of the 
Department of Psychology at UiT – The Arctic University 
of Norway (reference number: 2017/1912).

Materials and procedure

Probabilistic prediction task

A probabilistic prediction task programmed in Psychopy (Pei-
rce et al., 2019) was administered to measure decision-making 
and belief updating under different uncertainty conditions. Two 
task blocks (“volatile” and “cued”) differed in their degree of 
volatility, compromising 160 trials each (+ 12 and 18 training 
trials for the volatile and the cued task block, respectively). On 
each trial, a vertically striped stimulus was presented in the 
center of the screen, followed by an either left- or right-tilted 
stimulus (orientation ± 45°). Upon presentation of the verti-
cal stimulus, participants had to indicate via keypress (left-alt: 
“left-tilted”, right-ctrl: “right-tilted”) which one of the two tilted 
stimuli they predicted to see next (Fig. 1a). After a 2-second 
delay, the outcome (left- or right-tilted stimulus) was displayed 
for 2 seconds. The probability of seeing either a left- or a right-
tilted stimulus was unknown to the participants and changed 
every 20 (±4) trials, alternating between 80:20 and 60:40 and 
their reverse (20:80, 40:60), providing task periods of high 
(60:40, 40:60) and low (80:20, 20:80) risk and inducing high 
estimation uncertainty after each change (Fig. 1b). Changes 
in the underlying distribution of left- and right-tilted stimuli 
were not announced in the volatile and announced in the cued 
block (Fig. 1a). The order of the different risk conditions was 

the same across blocks and participants, while the identity of 
the majority stimulus was inverted between blocks (Fig. 1b). 
Block order was not counterbalanced, with the volatile task 
block always administered first. This was done to prevent prim-
ing participants from detecting the hidden change points in the 
volatile task block and maximize the experience of this block as 
volatile. If the cued task block were to be presented first, partici-
pants might form expectations about the timing of the hidden 
change points in the subsequent volatile block. Because the 
timing of these change points was identical across blocks, this 
would reduce unpredictability in the volatile block and might 
diminish the subjective experience of volatility overall.

Participants were instructed to fixate the center of the 
screen throughout the task and minimize the total amount 
of prediction errors. They were informed that over several 
trials in a row either the left- or the right-tilted stimulus 
would appear more often with a fixed but unknown prob-
ability, that probability and identity of the majority stimulus 
might change repeatedly, and that these changes would be 
hidden in the first, but announced in the second task block. 
Participants were advised to forget all they had learned 
about the stimulus probabilities on previous trials and start 
to learn “anew” following a change announcement. Task 
performance was assessed as accuracy (relative frequency 
of predicting the current majority stimulus) and proportion 
of choice switches (proportion of times where prediction on 
trial t + 1 was different from prediction on trial t; Fig. 1c), 
both aggregated separately for the two risk conditions per 
block.

Questionnaires and working memory measure

Autistic-like traits and psychotic-like experiences were 
measured with the abridged version of the Autism Quo-
tient (AQ; Hoekstra et al., 2011), and the positive symptom 
dimension of the Community Assessment of Psychic Expe-
riences (CAPE-P; Stefanis et al., 2002), respectively. For 
four participants, responses to three items of the CAPE-P 
(15 % of all items) were missing; thus, CAPE-P and AQ 
average scores are used in the main analyses. Additionally, 
age, gender, and education (recorded in categories of high-
est completed degree: high school, Bachelor, Master) were 
recorded. Working-memory capacity was assessed in the 
verbal-numerical domain and the visual-spatial domain, 
using the digit span and the matrix span task of a comput-
erized open source working memory test battery (Stone & 
Towse, 2015; see Supplementary Methods for details).

Pupil size

During the prediction task, pupil diameter was recorded 
from the right eye at a sampling rate of 500 Hz with an infra-
red video-based eye tracker (Eyelink 1000, SR Research).

Table 1  Summary statistics of demographic variables, average ques-
tionnaire scores, and working memory capacity

n = sample size of the different levels of categorical variables; M = 
mean; SD = standard deviation; Md = median; IQR = interquartile 
range; f = female, m = male; HS = high school, BA = bachelor, MA 
= master; CAPE-P = average score of the positive dimension scale of 
the CAPE (Community Assessment of Psychic Experiences), maxi-
mum score = 4, minimum = 1; AQ = average score of the Autism 
Quotient, maximum score = 1, minimum = 0; WMC = working 
memory capacity score, maximum score = 7, minimum = 0. Results 
are rounded to two decimal places

n M (SD) Md (IQR)

Gender (f/m) 31/21
Education (HS/BA/

MA)
34/13/5

Age 23.50 (4.13) 22.50 (6.00)
CAPE-P 1.46 (0.30) 1.41 (0.50)
AQ 0.30 (0.15) 0.29 (0.21)
WMC

Verbal-numerical 3.92 (0.90) 4.00 (1.00)
Visual-spatial 6.13 (0.84) 6.00 (1.25)
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Procedure

On the day of the assessment, participants signed the consent 
form before completing the first block of the prediction task 
(ca. 15 min). Then, the working memory task (ca. 10 min), 
a decision-making task (ca. 5 min; results are not reported 
here and are not assumed to affect behavior on any of the 
other tasks), and the second block of the prediction task (ca. 
15 min) were administered. Finally, participants completed 
the questionnaires (ca. 10 min).

Analysis

Computational modelling of behavior

To quantify latent cognitive processes, seven candidate com-
putational models were fitted independently to participants’ 

choices for the volatile and the cued block of the prediction 
task, respectively. The models included a simple win-stay-
lose-shift model (Worthy & Todd Maddox, 2014), four differ-
ent Reinforcement Learning models (den Ouden et al., 2013; 
Gläscher et al., 2008; Pearce & Hall, 1980; Rescorla & Wagner, 
1972) and two variants of the Hidden Markov Model (HMM; 
Schlagenhauf et al., 2014). All models were estimated under 
the hierarchical Bayesian framework (Ahn et al., 2017; Gelman 
et al., 2013; Zhang et al., 2020) using a Hamiltonian Monte 
Carlo (HMC) method within the statistical language Stan. See 
Supplementary Methods for details, including model compari-
son and rationale behind the choice of models. Model compari-
son revealed that a variant of the HMM provided the best fit for 
both task blocks (see Supplementary Tables S1 and S2). The 
HMM is a Bayesian inference model, which assumes that par-
ticipants make their choices (i.e., predict “left” or “right”) based 
on their belief of being in a state of the task where either the 

Fig. 1  Probabilistic prediction task. Notes. Figure adapted from Kreis 
et al. (2021). (a) Example trials with a change of stimulus probabili-
ties on trial 21. In the second, cued task block, this change was pre-
ceded by a “change” message on screen. In response, participants had 
to press “enter” before they could continue with the task. (b) Task 
structure: probabilities for the left-  (pleft) and the right-tilted (1-pleft) 
stimulus in the first task block (volatile block; solid line) and the 
second task block (cued block; dashed line). Time points of changes 

were identical in both blocks (lines are slightly jittered for better read-
ability), as was the order of the different risk conditions. The identity 
of the majority stimulus in the different risk conditions was inverted 
in the second as opposed to the first task block. (c) Boxplots display-
ing the proportion of trials where the majority stimulus was predicted 
(accuracy) and where choices differed from those on the preced-
ing trial (switches) for the different task blocks and risk conditions, 
respectively. Means are displayed as crosses
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left- or the right-tilted stimulus is more common. Those beliefs 
are updated on a trial-by-trial basis, modulated by the history of 
action-outcome pairs and the estimated transition probability 
for the two states (i.e., how likely does the state change from 
“predominantly left” to “predominantly right-tilted stimuli” and 
vice versa). Crucially, the transition probability γ reflects the 
perceived, i.e., subjective, volatility of the task environment. In 
the winning variant of the HMM, effects of positive (prediction 
correct) versus negative feedback (prediction incorrect) on state 
belief updates were allowed to differ  (HMMRP; Schlagenhauf 
et al., 2014). For the cued task block, this model included belief 
resets at every announced change point.

Based on the  HMMRP’s trial-wise state beliefs both 
before 
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rect prediction) probabilities as belief entropy:

Pupil signal preprocessing

Eye blinks and other artifacts (e.g., caused by head movements 
or eye lid flickering) were detected with a custom-built filter 
based on the pupil signal’s velocity implemented in R (version 
3.5.1; R Core Team, 2018) and were removed through cubic-
spline interpolation (Mathôt et al., 2018). Velocity thresholds 
and margins for blink windows were adapted on an individual 
basis to account for inter-individual differences in blink char-
acteristics, e.g., regarding the speed of signal recovery. The 
corrected pupil signal was smoothed with a low pass But-
terworth filter using a cut-off frequency of 3 Hz, because 
high-frequency components are more likely caused by noise 
(Klingner et al., 2008). When the time window of interpola-
tion spanned more than 1,000 consecutive milliseconds, the 
signal was treated as missing. The smoothed pupil signal was 
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trial by subtracting the average signal of the 500 ms preceding 
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the outcome onset. Trials with more than 50% of interpolated 
and missing data within the baseline or outcome presentation 
time window were treated as missing in subsequent analyses, 
where maximum pupil dilation during outcome presentation 
was the main variable of interest.

Statistical analyses

Linear mixed-effects models were used to investigate the 
effect of task conditions (high risk: 60:40/40:60 trials vs. 
low risk: 80:20/20:80 trials; cued block vs. volatile block), 
AQ and CAPE-P scores on accuracy, choice switches, choice 
uncertainty and Bayesian surprise. In all models, nested 
random factors were specified, allowing for different inter-
cepts at the different levels of risk condition within blocks 
nested within participants. The effect of choice uncertainty, 
Bayesian surprise, AQ, and CAPE-P scores on pupil dila-
tion also were tested by using linear mixed-effects models. 
Model residuals were tested for normality and dependent 
variables were cube-root (Bayesian surprise) or square-root 
transformed (maximum pupil dilation) when this assumption 
was violated. Because autistic traits and psychotic-like expe-
riences are positively correlated (Bevan Jones et al., 2012; 
Martinez et al., 2020), analyses were implemented sepa-
rately for AQ and CAPE-P. Nonnormally distributed vari-
ables were identified with Shapiro-Wilk tests and to evaluate 
the relationship between questionnaire scores and potential 
covariates, Spearman correlations (age; verbal-numerical 
and visual-spatial working memory scores), Kruskal-Wallis 
(education) and Mann-Whitney U tests (gender) were per-
formed. Data were analyzed with the statistical programming 
language R (version 3.5.1; R Core Team, 2018), with R pack-
age nlme (version 3.1-152; Pinheiro et al., 2021) for linear-
mixed effects models and ggplot2 (version 3.3.5, Wickham, 
2016) for visualization. All testing was conducted two-sided 
and with a significance level of 0.05. Standardized regression 
coefficients are reported together with 95% confidence inter-
vals. All results are rounded to two decimal places.

Results

AQ and CAPE-P scores were positively but not significantly 
correlated (ρ = 0.25, p = 0.08). Neither demographic nor 
working-memory variables were related to questionnaire 
scores (see Supplementary Results) and therefore were not 
included as covariates in any of the subsequent analyses.

Accuracy differs by task conditions 
but not questionnaire scores

Accuracy was higher in the cued task block (β = 0.69, t = 5.40, 
p < 0.001, 95% CI [0.43, 0.94]) and lower in the high-risk 
condition (β = −0.90, t = −8.57, p < 0.001, [−1.10, −0.69]; 
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Fig. 1c), with no significant interaction between block and 
risk (β = −0.25, t = −1.69, p = 0.09, [−0.54, 0.04]). When 
included in the model, none of the AQ predictors yielded 
a significant effect (AQ: β = −0.10, t = −0.92, p = 0.36, 
[−0.33, 0.12]; block*AQ: β = 0.04, t = 0.29, p = 0.77, [−0.22, 
0.29]; risk*AQ: β = 0.08, t = 0.78, p = 0.44, [−0.12, 0.29]; 
block*risk*AQ: β = −0.16, t = −1.06, p = 0.29, [−0.45, 0.13]; 
Figure S1). Results of a model that included CAPE-P instead of 
AQ scores were similar (CAPE-P: β = −0.12, t = −1.06, p = 
0.29, [−0.34, 0.10]; block*CAPE-P: β = 0.00, t = −0.01, p = 
0.99, [−0.25, 0.25]; risk*CAPE-P: β = 0.17, t = 1.68, p = 0.10, 
[−0.03, 0.38]; block*risk*CAPE-P (β = −0.23, t = −1.59, p = 
0.12, [−0.52, 0.05]; Figure S1).

Choice switches differ by task conditions and AQ 
scores

Proportion of choice switches was lower in the cued task 
block (β = −0.33, t = −2.76, p < 0.01, 95% CI [−0.56, 
−0.09]) and higher for high-risk trials (β = 0.50, t = 5.80, p 
< 0.001, [0.33, 0.67]; Fig. 1c), with no significant interac-
tion between block and risk (β = 0.16, t = 1.27, p = 0.21, 
[−0.08, 0.40]). Inclusion of AQ scores revealed a signifi-
cant interaction with risk (β = −0.19, t = −2.22, p = 0.03, 
[−0.36, −0.02]), indicating that proportion of switches on 
high- versus low-risk trials differed less for participants scor-
ing higher on the AQ (Fig. 2). Other AQ predictors were not 
significant (AQ: β = 0.18, t = 1.39, p = 0.17, [−0.08, 0.45]; 
block*AQ: β = −0.06, t = −0.47, p = 0.64, [−0.29, 0.18]; 
block*risk*AQ: β = 0.11, t = 0.87, p = 0.39, [−0.13, 0.34]). 
None of the CAPE-P predictors were significant (CAPE-P: β 
= 0.09, t = 0.69, p = 0.49, [−0.17, 0.35]; block*CAPE-P: β 
= 0.09, t = 0.73, p = 0.47, [−0.15, 0.32]; risk*CAPE-P: β = 
0.03, t = 0.30, p = 0.77, [−0.14, 0.20]; block*risk*CAPE-P: 
β = −0.02, t = −0.13, p = 0.90, [−0.26, 0.23]; Fig. 2).

Transition probability  (HMMRP) differs by block 
and CAPE‑P scores

Because  HMMRP models were fitted separately per task 
block and differed slightly in terms of belief resets, the esti-
mated transition probabilities were contrasted by directly 
comparing their posterior distributions. Transition probabil-
ity γ (subjective volatility) was credibly higher in the volatile 
block (M = 0.22) than in the cued block (M = 0.10) of the 
task (95% highest density interval of the difference [0.05, 
0.19]). AQ scores were not significantly related to γ in either 
block (volatile block: ρ = 0.17, p = 0.23; cued block: ρ = 
0.25, p = 0.08), whereas CAPE-P scores and γ correlated 
positively within the cued block (ρ = 0.28, p = 0.04; volatile 
block: ρ = 0.16, p = 0.25), indicating that participants with 
more psychotic-like experiences assumed higher volatility 
in the low-volatile block (Fig. 3).

Pupil response to choice uncertainty and Bayesian 
surprise is modulated by AQ and CAPE‑P scores

Both choice uncertainty (entropy) and Bayesian surprise dif-
fered by task conditions but were unrelated to questionnaire 
scores. Both measures had higher values under high risk, 
Bayesian surprise was increased under high volatility, and 
the effect of risk on choice uncertainty was more pronounced 
under low volatility (see Supplementary Results). The pupil 
response to trial-by-trial choice uncertainty and Bayesian 
surprise (z-scored per participant and block) was assessed in 
two separate models. Here, maximum pupil dilation during 
outcome presentation (square root transformed) was signifi-
cantly larger on trials where choice uncertainty was higher (β 
= 0.02, t = 2.16, p = 0.03, 95% CI [0.00, 0.05]), independ-
ent of block (block: β = 0.06, t = 1.26, p = 0.22, [−0.04, 
0.17]; choice uncertainty*block: β = 0.01, t = 0.41, p = 
0.68, [−0.03, 0.04]), and similarly, increased with Bayesian 
surprise (β = 0.04, t = 3.22, p < 0.01, [0.01, 0.06]), with no 
block effects (block: β = 0.06, t = 1.25, p = 0.22, [−0.04, 
0.17]; Bayesian surprise*block: β = −0.03, t = −1.55, p = 

Fig. 2  Relationship between trait and experience scores and propor-
tion of choice switches. Notes. Proportion of choice switches is pre-
sented separately for the different task blocks (columns) and risk con-
ditions (color). Trait and experience scores are average scores of AQ 
(top row) and CAPE-P (bottom row). Points represent values per par-
ticipant and task condition; lines are regression lines (linear model) to 
demonstrate trends. Proportion of choice switches was higher under 
high risk than low risk conditions. This association was moderated by 
AQ scores, with decreasing differentiation between high and low risk 
trials as AQ scores increased (see top two panels; interaction effect 
risk*AQ: β = −0.19, p = 0.03)
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0.12, [−0.06, 0.01]). However, these effects changed when 
adding questionnaire scores to the models, with responses 
to Bayesian surprise but not choice uncertainty affected by 
AQ (Table 2) and responses to choice uncertainty but not 
Bayesian surprise affected by CAPE-P (Table 3).

Specifically, inclusion of AQ scores revealed a sig-
nificant three-way interaction with Bayesian surprise 
and block (β = 0.05, t = 3.07, p < 0.01, [0.02, 0.08]), 
with pupil dilation scaling less with surprise in the vola-
tile and more in the cued task block as individual AQ 
scores increased. This indicates a reduced differentiation 
between high and low surprise values in the volatile, and 
increased differentiation in the cued task block for indi-
viduals with higher AQ scores (Fig. 4; Supplementary 
Figure S3).

In contrast, inclusion of CAPE-P scores (Table 3) yielded 
a significant three-way interaction with choice uncertainty 
and block (β = 0.04, t = 2.22, p = 0.03, [0.01, 0.07]), with 
pupil dilation scaling less with choice uncertainty in the 

volatile and more in the cued task block as individual CAPE-
P scores increased. This indicates a reduced differentiation 
between high and low choice uncertainty values in the vola-
tile, and increased differentiation in the cued task block for 
individuals with higher CAPE-P scores (Fig. 5; Supplemen-
tary Figure S4).

Discussion

Using a probabilistic reversal learning task and concurrent 
pupillometry, this study investigated the association of autis-
tic-like traits (AQ) and psychotic-like experiences (CAPE-
P) with uncertainty processing in a sample of neurotypical 
adults. In contrast to findings from reversal learning studies 
using clinical samples (Culbreth et al., 2016; Deserno et al., 
2020; Mussey et al., 2015; Waltz et al., 2013), the amount 
of switching per se was not significantly elevated in indi-
viduals with higher AQ or CAPE-P scores. This may be due 
to lower symptom load in neurotypical samples as well as 
differences in task design (e.g., regarding the use of mon-
etary rewards [Culbreth et al., 2016; Deserno et al., 2020; 
Mussey et al., 2015; Waltz et al., 2013] or different risk 
conditions [Culbreth et al., 2016; Deserno et al., 2020; Waltz 
et al., 2013]). Participants switched more often between the 
two choice options on high-risk compared to low-risk tri-
als, possibly resulting from increased uncertainty about the 
favorable response as well as “matching” behavior typical 
for probabilistic learning tasks (Feher da Silva et al., 2017). 
This effect was significantly smaller for participants with 
higher AQ scores, suggesting deficits in implicit probability 
learning (i.e., differentiating between risk conditions), in line 
with previous findings (Solomon et al., 2015).

Computational modelling revealed that subjective vola-
tility was significantly higher for participants scoring high 
on CAPE-P in the cued, low-volatile task block, replicat-
ing prior findings of volatility overestimation in psychotic 
disorders such as schizophrenia (Cole et al., 2020; Deserno 
et al., 2020). This may seem surprising, as changes were 
announced in this block. It is possible that, given higher ini-
tial volatility assumptions, these participants still perceived 
the task states between announced changes as more unsta-
ble or that a failure to learn about the underlying risks and 
subsequently increased estimation uncertainty periodically 
caused more exploratory behavior, resulting in an increased 
volatility estimate. This uncertainty may have been too sub-
tle to translate into behaviorally measured switching effects 
or overall differences in choice uncertainty.

Although the absence of AQ or CAPE-score correla-
tions with subjective volatility during the volatile task 
block implies no effect of trait and experience scores on 
volatility representation under conditions of high volatility, 
pupillometric findings point to differences with regards to 

Fig. 3  Relationship between trait and experience scores and subjec-
tive volatility (transition probability). Notes. Subjective volatility esti-
mates (transition probability) are plotted against trait and experience 
scores of AQ (top row) and CAPE-P (bottom row), separately for the 
different task blocks (columns). In accordance with the non-normal 
distributions of those variables, Spearman correlations are used and 
ranked values are presented. Statistics of the Spearman correlations 
are displayed in the top-right corner of each panel, and regression 
lines (linear model) are added to demonstrate trends
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Table 2  Linear mixed-effects model results for pupil dilation (dependent variable) by choice uncertainty (entropy), Bayesian surprise and AQ

Coefficients of the fixed effects in the separate linear mixed-effects models of pupil dilation by entropy and Bayesian surprise (both z-scored per 
block and participant; model included nested random effects for block within participant), including AQ score as a predictor. CI = confidence 
interval; block = contrast of the second, cued task block to the first, volatile task block; AQ = Autism Quotient average score; R2m = marginal 
R2, i.e. proportion of variance explained by the fixed effects alone; R2c = conditional R2, i.e., proportion of variance explained by both the fixed 
and random effects (R2m and R2c based on Nakagawa & Schielzeth, 2013). Results are rounded to two decimal places

Latent  HMMRP predictor β t p 95% CI R2
M R2

C

Entropy 0.01 0.16
Entropy 0.02 2.16 0.03 [0.00, 0.05]
Block 0.06 1.30 0.20 [−0.03, 0.16]
AQ −0.01 −0.14 0.89 [−0.12, 0.11]
Entropy*block 0.01 0.41 0.68 [−0.03, 0.04]
Entropy*AQ 0.00 −0.06 0.95 [−0.02, 0.02]
Block*AQ 0.10 1.99 0.05 [0.00, 0.19]
Entropy*block*AQ 0.01 0.47 0.64 [−0.02, 0.04]

Bayesian surprise 0.01 0.16
Bay. surprise 0.04 3.24 <0.01 [0.01, 0.06]
Block 0.06 1.30 0.20 [−0.03, 0.16]
AQ −0.01 −0.14 0.89 [−0.12, 0.11]
Bay. surprise*block −0.03 −1.57 0.12 [−0.06, 0.01]
Bay. surprise*AQ −0.02 −2.17 0.03 [−0.05, 0.00]
Block*AQ 0.10 1.98 0.05 [0.00, 0.19]
Bay. surprise*block*AQ 0.05 3.07 <0.01 [0.02, 0.08]

Table 3  Linear mixed-effects model results for pupil dilation by choice uncertainty (entropy), Bayesian surprise and CAPE-P (C-P)

Coefficients of the fixed effects in the separate linear mixed-effects models of pupil dilation by entropy and Bayesian surprise (both z-scored per 
block and participant; model included nested random effects for block within participant), including C-P score as a predictor. CI = confidence 
interval; block = contrast of the second, cued task block to the first, volatile task block; C-P = average score of the positive dimension scale of 
the CAPE (Community Assessment of Psychic Experiences); R2m = marginal R2, i.e. proportion of variance explained by the fixed effects alone; 
R2c = conditional R2, i.e. proportion of variance explained by both the fixed and random effects (R2m and R2c based on Nakagawa & Schielzeth, 
2013). Results are rounded to two decimal places

Latent  HMMRP predictor β t p 95% CI R2
M R2

C

Entropy 0.01 0.16
Entropy 0.02 2.05 0.04 [0.00, 0.05]
Block 0.06 1.26 0.21 [−0.04, 0.17]
C-P −0.11 −2.07 0.04 [−0.23, 0.00]
Entropy*block 0.01 0.50 0.62 [−0.02, 0.04]
Entropy*C-P -0.02 −1.77 0.08 [−0.04, 0.00]
Block*C-P 0.01 0.21 0.83 [−0.09, 0.11]
Entropy*block*C-P 0.04 2.22 0.03 [0.00, 0.07]

Bayesian surprise 0.01 0.16
Bay. surprise 0.04 3.21 <0.01 [0.01, 0.06]
Block 0.06 1.25 0.22 [−0.04, 0.17]
C-P −0.11 −2.07 0.04 [−0.23, 0.00]
Bay. surprise*block −0.03 −1.53 0.13 [−0.06, 0.01]
Bay. surprise*C-P 0.00 −0.17 0.86 [−0.03, 0.02]
Block*C-P 0.01 0.21 0.84 [−0.09, 0.11]
Bay. surprise*block*C-P 0.02 1.40 0.16 [−0.01, 0.06]
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how individuals react to this volatility. Overall, pupil dila-
tion scaled positively with both choice uncertainty and 
Bayesian surprise. While choice uncertainty expresses the 
uncertainty surrounding current beliefs of what may be the 
more favorable choice, Bayesian surprise signals the extent 
to which a belief should be updated. Hence, both relate to 
the informational value of the currently presented outcome 
for learning and belief updating: if uncertainty is high, the 
presented outcome may be particularly relevant to update 
beliefs and reduce uncertainty; if surprise is high, it indicates 
that a relatively larger belief update is warranted, possibly 
due to a change in the risk associated with different out-
comes. Their associations with pupil dilation replicate previ-
ous findings (Hämmerer et al., 2019; Kreis et al., 2021) and 
fit well with the assumption that pupil size as an indicator 

for LC-NE activity signals neural gain and learning (Eldar 
et al., 2013; Joshi et al., 2016). Interestingly, the extent to 
which pupil dilation scaled with choice uncertainty and 
Bayesian surprise was moderated by questionnaire scores 
and task block. Individuals with higher AQ scores showed a 
diminished differentiation between high and low Bayesian 
surprise values in the volatile, and enhanced differentiation 
in the cued task block. Similarly, individuals with higher 
CAPE-P scores showed a diminished differentiation between 
high and low choice uncertainty values in the volatile, and 
enhanced differentiation in the cued task block. In theory, 
reduced pupil size adaptation in response to these learning 
signals in the volatile task block could be caused by an over-
estimation of volatility which renders all stimuli similarly 
surprising and worth directing one’s attention to. However, 

Fig 4  Pupil responses to choice uncertainty (entropy) and Bayesian 
surprise, moderated by AQ scores. Notes. Pupil responses during 
outcome presentation to choice uncertainty (entropy; top row) and 
Bayesian surprise (bottom row) are presented separately for the two 
task blocks (columns). Colors differentiate between responses for 
trials with high or low entropy/Bayesian surprise (defined as values 
within participant-specific upper and lower quartile) and participants 
scoring high or low on the AQ (defined as values above or below the 
sample-based median). These quartile- and median-based categori-

zations of high versus low entropy/Bayesian surprise trials and high 
versus low AQ scores, respectively, were not used in any of the statis-
tical models and only applied here for illustration purposes. Reddish 
colors indicate a high, blueish colors a low AQ score, darker shades 
represent high, brighter shades low entropy/Bayesian surprise values. 
Mean (solid line) and standard error of the mean (shaded area) were 
calculated for each sample of the z-scored and baseline-corrected 
pupil signal during outcome presentation
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given that subjective volatility estimates in this block were 
not significantly related to any of the questionnaire scores, 
this seems unlikely. Instead, these results might be caused 
by a hypersensitivity to volatility which increases the diffi-
culty of keeping track of underlying changes in uncertainty 
and surprise or decreases the subjective relevance of doing 
so. With risk conditions constantly changing, high-scoring 
and volatility-sensitive participants may have struggled to 
identify relevant learning signals or gave up tracking them. 
In contrast, the increased pupil size adaptation in response 
to choice uncertainty and Bayesian surprise in the cued task 
block may in fact be caused by an overestimation of volatil-
ity in an objectively rather stable environment, where belief 
updating in response to these learning signals should be 
less drastic than in volatile environments. When volatility 

is overestimated, high choice uncertainty and Bayesian sur-
prise values may be falsely attributed to changes in under-
lying risk conditions when they in fact simply reflect the 
current and irreducible risk condition and task-inherent sta-
tistical deviations. The positive correlations between subjec-
tive volatility in the cued task block and CAPE-P as well as 
AQ scores (albeit not statistically significant for the latter), 
align with this interpretation.

These results fit well with previous findings of diminished 
pupil responses to surprise and uncertainty in individuals 
with autism (Lawson et al., 2017) and schizophrenia (Kreis 
et al., 2021). Diminished pupil responses may reflect aber-
rant norepinephrinergic (NE) signaling, which has been 
proposed to underlie altered uncertainty processing in both 
autism and schizophrenia (Kreis et al., 2021; Strauss et al., 

Fig. 5  Pupil responses to choice uncertainty (entropy) and Bayesian 
surprise, moderated by CAPE-P scores (C-P). Notes. Pupil responses 
during outcome presentation to choice uncertainty (entropy; top row) 
and Bayesian surprise (bottom row) are presented separately for the 
two task blocks (columns). Colors differentiate between responses 
for trials with high or low entropy/Bayesian surprise (defined as 
values within participant-specific upper and lower quartile) and par-
ticipants scoring high or low on the CAPE-P (C-P; defined as val-
ues above or below the sample-based median). These quartile- and 

median-based categorizations of high versus low entropy/Bayesian 
surprise trials and high versus low CAPE-P scores, respectively, 
were not used in any of the statistical models and only applied here 
for illustration purposes. Reddish colors indicate a high, blueish 
colors a low CAPE-P score, darker shades represent high, brighter 
shades low entropy/Bayesian surprise values. Mean (solid line) and 
standard error of the mean (shaded area) were calculated for each 
sample of the z-scored and baseline-corrected pupil signal during 
outcome presentation
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2013; Van de Cruys et al., 2014). The locus coeruleus-NE 
system receives input from the anterior cingulate cortex, a 
brain region that, together with the insula and the prefron-
tal cortex, is critically implicated in decision-making under 
and processing of uncertainty. In both autism and schizo-
phrenia, abnormal activity and connectivity of these regions 
may contribute to misestimation of uncertainty and altered 
decision-making in uncertain task environments (Fromm 
et al., 2022; Strauss et al., 2013; Van de Cruys et al., 2014). 
To what extent this is true for neurotypical individuals with 
elevated autistic- and psychotic-like traits and experiences 
remains to be unraveled, though similar activation altera-
tions during learning under uncertainty have been observed 
in individuals with delusions (Fromm et al., 2022) and at 
risk for psychosis (Cole et al., 2020).

Notably, pupil responses to choice uncertainty (entropy) 
and Bayesian surprise were affected differently by the dif-
ferent traits and experiences. This divergence may indicate 
that choice uncertainty-representation related processes are 
more vulnerable to psychotic-like experiences and surprise-
representation related processes more vulnerable to autistic-
like traits, but this question warrants further investigation. 
Future studies should aim to include larger samples or pre-
select participants scoring particularly high and low on the 
AQ and the CAPE-P to include a wider range of trait and 
experience scores.

It should be noted that the model space in this study is 
not exhaustive, and that other models have provided rea-
sonable computational mechanisms in similar task, such as 
the Hierarchical Gaussian Filter model (HGF) by Mathys 
et al. (2011) and the Ideal-Observer model by Behrens et al. 
(2007). The HGF, however, is more suitable for tasks that 
implement drifting risk changes, whereas risk remained 
fixed within each reversal period in the task used in this 
study. The Ideal-Observer model offers only a normative 
account, i.e., how individuals are supposed to behave under 
ideal circumstances, rather than an explanatory account 
which was more relevant to this study. In addition, the mod-
els employed here are deeply rooted within the Markov the-
ory, and prior work has provided ample evidence regarding 
their efficiency and appropriateness (e.g., Hämmerer et al., 
2019; Kreis et al., 2021; Schlagenhauf et al., 2014). Hence, 
the choice of model space in this study also enables direct 
replication in relation to prior work.

Block order was not counterbalanced in this study to 
maximize the difference between the cued and the volatile 
block and create a truly volatile and unpredictable experi-
ence in the volatile block. Timing of change points and order 
of the different risk conditions were identical in both blocks 
to ensure they only differed in unpredictability, i.e., volatil-
ity, of risk changes. If the cued block were to be adminis-
tered first, participants may learn about the timing of change 
points based on the change announcements and transfer that 

knowledge to the subsequent volatile block, where hidden 
changes consequentially might be easier to detect. This 
would reduce the experienced volatility in this block and 
would diminish the difference between both blocks, with 
both being “cued” to some degree. Nevertheless, investigat-
ing this effect may be interesting to address questions above 
and beyond those of the current study, for example, to what 
extent the ability to transfer this acquired knowledge about 
change points to decision-making in the volatile block varies 
with autism- or psychosis-like traits and experiences. Nota-
bly, some research indicates increased subjective volatility 
under volatile conditions even if following stable conditions 
(Browning et al., 2015), and recent studies have demon-
strated that starting with an easy block, where changes in 
risk are less difficult to identify, can increase susceptibil-
ity to subsequent volatility because stronger expectations 
have been formed (Reed et al., 2020; Sheffield et al., 2022; 
Suthaharan et al., 2021). However, task designs differed with 
either no risk changes appearing under stable conditions 
at all (Browning et al., 2015), or varying risk conditions 
between blocks (Reed et al., 2020; Sheffield et al., 2022; 
Suthaharan et al., 2021). In contrast, and due to reasons out-
lined above, the task used in the current study may be more 
vulnerable to such order manipulations.

Together, these results provide important insights into 
how autistic- and psychotic-like traits and experiences are 
related to processing and representation of different kinds 
of uncertainty – even in neurotypical individuals. While 
psychotic-like experiences were associated with overes-
timation of volatility in a low-volatile period of the task, 
behavioral results further point to a link between autistic-like 
traits and risk misestimation. Psychophysiological results 
revealed a distinct pattern of abnormal neural gain adapta-
tion to uncertainty and surprise for psychotic- and autistic-
like traits and experiences, respectively. This is in line with 
theoretical accounts of abnormal uncertainty processing and 
consequentially aberrant belief updating in psychosis and 
autism spectrum disorders.

Supplementary Information The online version contains supplemen-
tary material available at https:// doi. org/ 10. 3758/ s13415- 023- 01088-2.
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