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Abstract

The use of Bayes factors is becoming increasingly common in psychological sciences. Thus, it is impor-
tant that researchers understand the logic behind the Bayes factor in order to correctly interpret it, and
the strengths of weaknesses of the Bayesian approach. As education for psychological scientists focuses
on frequentist statistics, resources are needed for researchers and students who want to learn more about
this alternative approach. The aim of the current article is to provide such an overview to a psychologi-
cal researcher. We cover the general logic behind Bayesian statistics, explain how the Bayes factor is
calculated, how to set the priors in popular software packages to reflect the prior beliefs of the
researcher, and finally provide a set of recommendations and caveats for interpreting Bayes factors.

Translational Abstract

The current article discusses two statistical approaches that are commonly used in psychological scien-
ces: a Bayesian approach and a frequentist approach. While a frequentist approach is generally taught to
aspiring psychology researchers, the Bayesian approach is becoming increasingly popular. Here, we pro-
vide an introduction and tutorial on using the Bayesian approach to test hypotheses. We cover the gen-
eral logic behind Bayesian statistics, explain how the Bayes factor is calculated and the settings in
popular software packages, and finally provide a set of recommendations and caveats for interpreting

Bayes factors.

Keywords: Bayes’ theorem, JASP, prior distributions, p-hacking, B-hacking

A Note on Reading This Article: Reading an article about statistics is very
different from reading an article about psychological sciences. When
reading a psychology article, most experienced psychological scientists
can read it once and understand its contents. Simply reading the article is
often not sufficient for understanding statistics articles, which can be frus-
trating. We suggest to first read this article to get the general ideas behind
it (if necessary, skipping the more maths-heavy sections—we flag the sec-

tions which can be skipped without compromising on the understanding of

the general concepts). After a consolidation period, rereading the article
more thoroughly may be helpful, and the reader may want to spend time

on understanding the details: Scrutinize the formulae, try to understand

where each term comes from, and compute some additional examples (e.
8., for Figure 1, calculating the posterior probabilities for different prior

probabilities, power parameters, and alpha-levels).

The most common statistical tool for making inferences in psycho-
logical sciences is the p-value. The p-value has been criticized (e.g.,
Cumming, 2014; Wagenmakers, 2007), and its (mis)use has received
some of the blame for the replication crisis in psychology (Dienes,
2016; Halsey et al., 2015; Open Science Collaboration, 2015, for a
thorough discussion about p-values, see special issue on this topic in
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Figure 1
The Role of Prior Probability in Determining Posterior Probability

10,000 hypotheses

P(H,|p<0.05) = 4000/(4000+250)
=0.94

P(H) =05

4,000 significant 1,000 non-significant 250 significant 4,750 non-significant
(true positives) (false negatives) (false positives) (true negatives)
Power: 80% Alpha: 5%

P(H,|p<0.05) = B0/(80+495)
=0.14

10,000 hypotheses

P(Hy) = 0.99

80 significant (true 20 non-significant 495 significant 9,405 non-significant
positives) (false negatives) (false positives) (true negatives)
Power: 80% Alpha: 5%

Note. Calculation of the posterior probability of the null hypothesis not being true after
observing a significant effect (p < 0.05), under the assumption of 80% power, alpha = 0.05,
and (1) 50% of all experiments being conducted are on cases where the null hypothesis is true
(upper panel), and (2) when 99% of all experiments being conducted are on cases where the
null hypothesis is true (lower panel). See the online article for the color version of this figure.

the American Statistician, e.g., Wasserstein & Lazar, 2016). As an al-
ternative to p-values, some researchers have proposed to switch to
Bayesian statistics for inference (Dienes, 2011; Rouder et al., 2009;
Wagenmakers, 2007). Bayesian statistics follow a different philoso-
phy compared to p-values, which are derived from a frequentist
framework, and may be a valuable addition to the tools in a psycho-
logical scientist’s repertoire. An often-cited advantage of Bayes fac-
tor analyses over significance testing is that the Bayes factor allows
us to provide evidence for the null hypothesis, rather than only being
able to reject it (but see also Harms & Lakens, 2018; Lakens, 2017).
However, using Bayesian statistics without a thorough understanding
is likely to result in the inheritance of one of the main issues with p-
values: the application of a statistical ritual, which may lead to subop-
timal decisions about how to analyze the data, and which conclusion
one can draw from them (Gigerenzer, 2004). In the case of Bayesian
statistics, the danger of the analysis turning into a ritual is exacer-
bated, compared to frequentist statistics, because most researchers
and current psychology students have covered the latter extensively
throughout their studies.

Using Bayes factors requires the explicit specification of parame-
ters that are not necessary for calculating a p-value (e.g., prior distri-
butions); thus, arguably, greater familiarity with the logic underlying
these analyses is required to make informed decisions about the pa-
rameter choices. The current article therefore aims to bridge a gap in
the literature on statistical tools, by explaining Bayesian statistics,
and in particular the Bayes factor, to a researcher or student who has
received only the basic statistics education that is standard as part of
a psychology degree (see also Colling & Sztics, 2018; Kruschke &
Liddell, 2018; Tendeiro & Kiers, 2019, for texts with a similar aim

but on a more advanced level, as well as Vandekerckhove et al.,
2018; and the corresponding special issue). To be clear, the current
article does not aim to convert researchers to using Bayes factors for
inference, but rather to provide them with a minimum amount of
knowledge that is necessary to interpret a Bayes factor, should they
decide to use it or come across it in another article.

What Do Bayesian Statistics Mean? An Introduction to
Bayes’ Theorem

Bayesian statistics cover a range of procedures, though the most
popular one in psychological science is the Bayes factor (Dienes,
2014; Mulder & Wagenmakers, 2016; Rouder et al., 2009). Their
best-known property is likely to be the fact that they are susceptible
to distribution priors: the prior belief that a researcher has about the
models’ predictions before collecting data or conducting the analy-
sis, which can be explicitly included in the statistical model (see
Table 1 and section What is a Bayes Factor? for a more detailed
definition and explanation of different types of priors). This feature
derives from the origin of the term “Bayesian statistics,” namely
Bayes’ theorem (for more detailed description of the theorem, see
Rouder & Morey, 2019). A description of the theorem and its impli-
cation for making inferences follows; however, a reader who aims
to get only a first-pass conceptual understanding may skip to the In-
terim Summary and Discussion subsection without compromising
their understanding of the subsequent sections.

Bayes’ theorem describes the conditional probability of an event,
P(A|B; reads as “probability of A given B”). Conditional probability
is an important concept not just for Bayesian statistics but also for
properly understanding frequentist statistics: it is the probability of
an event (A), under the condition of a different event (B), such as the
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WHAT IS A BAYES FACTOR? 3

Table 1
Glossary

Terminology

Definition

B-hacking
the biggest Bayes factor.
Bayes factor
over another.
Bayes’ theorem
Bayesian statistics

Misuse of the Bayes factor, where different analyses are tried and the researcher selectively reports only the analyses with
A method of model selection which can be used for hypothesis testing and relies on quantifying the support for one model

The formula that allows us to invert a conditional probability, i.e., to get from P(A|B) to P(B|A).
A philosophy underlying the concept of probability, where probability can be seen as a degree of belief, which is obtained

by combining prior knowledge with incoming evidence.

Cauchy distribution

A probability distribution, similar in shape to the normal (Gaussian) distribution, with two parameters defining its shape: a

location parameter and width parameter (®). This distribution is a popular choice for a prior for the computation of Bayes

factors.
Cohen’s d
standard deviation.
Conditional probability

A standardised measure of effect size, where a mean difference between two conditions is divided by an estimate of the

The probability of an event (E) under the assumption that a given condition (C) is true: For example, the true positive is a

conditional probability describing the probability of the disease (E) only in the subset of people who test positive on this

test (C), written as P(E|C).
Frequentist statistics

JASP

An inferential framework, where probabilities are defined as the proportion of times an event would happen, under specified
assumptions, with infinitely repeated sampling.
An open-source software that has an intuitive user interface which allows researchers to calculate Bayes factors as well as

frequentist statistics for a wide range of experimental designs.

p-hacking
nificant p-values.
Model prior
Parameter prior
Posterior

Misuse of the p-value, where different analyses are tried and the researcher selectively reports only the analyses with the sig-

Prior belief of hypothesis, before data is acquired.
Prior belief of the model parameters (e.g., effect size), before data is acquired.
Posterior belief of the hypothesis in light of data.

probability of a person having a disease (A) under the condition that
they have scored positively on a test designed to diagnose it (B).
Bayes’ theorem has the following mathematical form:

P(A) - P(B|A)

PAB) = =5

To illustrate the meaning of this equation with an example:
We would like to get the conditional probability that a patient
has a disease (A), given they tested positive on some diagnostic
test (B). In order to calculate this, we need to know both the
probability that this patient has the disease (P(A)) and the condi-
tional probability that the test would detect this disease, under
the assumption that the patient has it (P(B|A), or the true positive
rate). P(B), in the denominator, refers to the overall probability
that a person chosen at random will get a positive test, regardless
of whether they are affected or not. P(A) is the prior probability;
in this case one can substitute the prevalence of the disorder. If a
disorder is extremely rare (e.g., the Black Plague), it is intuitive
that, even if someone tested positive on a test that is supposed to
detect it, the probability of the patient actually having it contin-
ues to be low. The term P(A) is multiplied by the ratio of positive
test rates, which reflects the intuitive point that, all else kept
equal, a low prior probability (or, as P(A) — 0) will lead to a low
posterior probability (P(A|B) — 0).

Bayes’ theorem can be used to demonstrate the concept of
applying prior knowledge in a formal calculation, though it does
not directly translate to the way in which Bayesian statistics
such as the Bayes factor are calculated. After introducing the
logic behind Bayes’ theorem, we can apply it to a statistical null
hypothesis test. Let’s say we obtain an observation B, such as
running an experiment and obtaining a p-value smaller than .05.
For example, a psychological researcher may be keen to gain

insights into whether a treatment is effective. We can write this
as A: The probability that the null hypothesis of no treatment
effect (Hy) is wrong (A = P(H,))." Applying these variables to
Bayes’ theorem, we get the following:

P(Hy)- P(p < .05|H,)

P(p < .05|H)) is the statistical power, because statistical power
is defined as the conditional probability of a significant p-value,
given that the alternative hypothesis is true (formally, a power cal-
culation requires us to specify an effect size, which is often denoted
as H,). If power is 80%, then P(p < .05|H;), also known as the true
positive rate, is .80. So far, these are concepts that most readers will
be familiar with from their use of frequentist statistics.

The novel concept in this equation is the probability of the hy-
pothesis (P(Hy)) or rather its inverse, P(H;). We also need to cal-
culate P(p < .05), the overall probability of a significant p-value.
How this is calculated can be derived intuitively from Figure 1.
For now, we focus on the P(H;)-term in the numerator. We can
plug in the values for the standardly assumed case of 80% power
and alpha-level of .05, and assuming that we observed a significant
p-value in an experiment:

P(H,)- 0.80
0.80 -P(H,) + 0.05-P(Ho)

P(H|p < 0.05) =

!'Note that we assume only two plausible hypotheses: Hy and H;. We
can make this assumptions under two conditions: either when H; is a
nondirectional hypothesis, H;: 8 # 0, or when we have a strong theoretical
rationale for assuming a more specific H; such that Hy and H, are the only
two plausible hypotheses (e.g., a directional hypothesis, where H1: 6 > 0).
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For the probability of the null hypothesis being false (P(H;)), the
researcher needs to apply some informed judgment. Putting this
into a concrete example, let’s say, our null hypothesis is that pre-
cognition is not real: Humans cannot foresee the future. To test this
hypothesis, we recruit undergraduate students and ask them to pre-
dict, in an alternative-forced-choice experiment, which words they
will see in a word list which will be presented to them afterward
(Bem, 2011). Most researchers will have a very strong prior that pre-
cognition is not real: We could put a number on this by saying that, in
this case, our prior belief in the null hypothesis is 99%. In this case,
the probability of the null hypothesis (Hy) is 0.99, and the probability
of Hy is 0.01. If we run the experiment and find that undergraduate
students are significantly above chance level (with p < .05, ie., the
standard significance threshold), we can substitute the following:

0.01- 0.80

P(H\[p < 05) =
(Hilp ) 0.80 -0.01 + 0.05-0.99

This calculation gives us a value of P(H;|p < .05) = .14: Even
after observing a significant p-value, given the parameters described
above and a strong prior belief that precognition is not real, the proba-
bility of the null hypothesis remains approximately 86%. The obtained
posterior probability may seem disappointing to a researcher searching
for a yes-or-no answer. However, an alternative way to think about
getting from a prior to a posterior probability is that we have updated
our prior belief in light of incoming evidence: while the hypothesis
had a very low probability of being true in the first place, we consider
it approximately 14 times more likely after having observed the signifi-
cant p-value (see https://www.youtube.com/watch?v=1G4VkPoG3ko
for a video explaining this point). Figure 1 depicts Bayes’ theorem,
and the steps for calculating the conditional probabilities, P(H;|p <
.05), using frequency counts rather than percentages, under two differ-
ent assumptions: 50% confidence about the null hypothesis being true,
or 99% confidence about the null hypothesis being true.

It is noteworthy that Figure 1 and the in-text description of the appli-
cation of Bayes’ theorem to calculate P(H;|p < .05) rely on different
definitions of probability (see Chapter 8 of Spiegelhalter, 2019 for a
description and summary of different definitions of probability). In the
text, we described the percentage, which we plugged in as the prior
probability, as the “prior belief” associated with one particular hypoth-
esis. This is in line with a Bayesian approach. Here, the outcome of a
hypothesis test serves to shift the prior belief of a given hypothesis to a
posterior belief, which incorporates incoming evidence. In contrast, in
Figure 1, we take a large number of different possible hypotheses, and
the prior is the percentage of possible hypotheses where Hy is true. We
do not assign a probability to a specific hypothesis, but rather calculate
what would happen with the posterior probability in the long run (i.e.,
if we repeat the procedure frequently, giving rise to the term “frequent-
ist statistics”), under different assumptions. Most types of data can be
analyzed with either Bayesian or frequentist methods: there is nothing
inherent to a dataset that makes it “frequentist” or “Bayesian” or spe-
cifically suitable for these approaches.

The reason why Figure 1 shows Bayes’ theorem in terms of fre-
quencies rather than probabilities is to facilitate the understanding of
the underlying concepts, as studies have shown that most people find
natural frequencies more intuitive than probabilities (reviewed in
Gigerenzer et al., 2007). The presentation of natural frequencies is
in line with a frequentist approach: despite the use of Bayes’ theo-
rem, the processes are described by making assumptions about what

happens in the long run (e.g., about the percentage of hypotheses
where Hy is true). The probability of a single hypothesis being true
or false cannot be assigned in the frequentist framework, because the
long-run behavior does not allow for inferences about a single event.

The section above aims to introduce the concepts of prior and poste-
rior beliefs, and to explain the workings behind Bayes’ theorem. These
are important concepts for Bayesian statistics, but it is important to
stress that the calculations are not directly relevant to computing and
interpreting a Bayes factor, which we will introduce in the next section.
Bayes’ theorem illustrates the intuitive idea that, if a hypothesis is
highly unlikely, it remains unlikely (though slightly less so) even after
we collect data that is consistent with it. Let's say we conduct two
experiments: one on precognition (testing whether participants can fore-
see the future; Bem, 2011) and one on the Stroop effect (testing
whether it takes longer to name the color of the font when a color word
is written in a color which is incongruent with it compared to when it is
congruent; MacLeod, 1991). For both experiments, we happen to
observe a p-value of p = .026. A naive user of statistics may conclude
that the identical p-values suggest that both effects are true. A Bayesian
approach gives us a more intuitive justification for remaining more
skeptical about precognition than about the Stroop effect (although the-
oretical and methodological justifications may be more pertinent).

An important point demonstrated in the calculations above is that we
cannot calculate the posterior probability of a hypothesis without the
prior, which can be conceptualized as the researcher’s belief that a
given hypothesis (e.g., the null hypothesis) is correct. The p-value gives
us the conditional probability of the observed data (or more extreme
observations), given the null hypothesis (P(Data|Null Hypothesis)):
whenever we want to get from P(B|A) to P(A|B; ie., to calculate
P(Null Hypothesis|Data)), we need to use Bayes’ theorem. Calculating
the posterior probability of the hypothesis, given some data, is not pos-
sible without making some assumptions about its a priori probability.

Compared with using the p-value for frequentist inference, Bayes-
ian statistics follow two principles which we have discussed so far:
(a) They take into account the prior probability to calculate a poste-
rior probability, and (b) they can describe the probability of a single
hypothesis, as opposed to the long-term behavior under a set of
assumptions. Both of these principles are important to bear in mind
when we aim to understand how Bayesian statistics such as the
Bayes factor can be used for inference.

What Is the Bayes Factor?

In the following section, we provide a step-by-step instruction
about how a researcher may construct a set of priors and use these to
calculate a Bayes factor (for a more advanced tutorial, see Wagen-
makers et al., 2010). So far, we have focused on one hypothesis
only: the null hypothesis. If we imagine any research question that
we have been thinking about lately, and we describe the statistical
hypothesis in words, it might go something like this: “According to
my theory, there should be a difference between two conditions,
where one group should have higher scores than the other. The dif-
ference probably will not be too big, but neither too small. If my
theory is incorrect, there will be no difference.”” A sensible way to

2 This seems to be a typical way in which psychological scientists
formulate a hypothesis, and it is a reasonable approach if the researcher has
little information about the possible effect size, and if there is no practical
or theoretical reason for specifying a smallest effect of interest.


https://www.youtube.com/watch?v=lG4VkPoG3ko
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Figure 2

Getting From Theoretical Model to a Set of Priors

A. A theoretical model of sensible priors
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How to Generate a Set of Sensible Priors for the Null and Alternative (Panels A and B), and to Incorporate

Incoming Data (Panels C and D). See the online article for the color version of this figure.

draw this theory-driven hypothesis is depicted in Figure 2, Panel A
(the plots in Figure 2 are generated from code provided by Rouder,
2016). The y-axis shows the density, which is proportional to the
probability of a given effect size for the alternative hypothesis.

Our theoretical null model is that there will be no effect: The
difference between the conditions will be exactly zero. This gives
us the point prediction, drawn as the blue arrow. An effect which
is not too big, not too small, could be described as Cohen’s d = .5
(Lakens, 2013). However, we do not want to confine the model by
saying that any values that are slightly bigger or slightly smaller
are incompatible with our alternative hypothesis: We consider a
medium-sized effect to be most likely, but also values around it
would also be compatible with our theory. Getting from the model
descriptions in Panel A to a distribution describing the predictions
for an experimental outcome requires a mathematical procedure
(described by Rouder, 2016). In Panel B, the point prediction of
the null hypothesis is represented by a distribution, as in reality,
we predict that the observed effect size will vary around the zero
point due to sampling variability. For the alternative hypothesis,
we apply a transformation which makes the prior distribution
broader: Again, due to sampling variability, our prediction about
the observed effect size is less precise than our prior distribution
about the population parameter, which is reflected by the broader
distribution. With this, we have designed a set of sensible priors
for the null and alternative models, and we are ready to collect data.

Once we have collected the data, we can calculate the size of our
effect of interest. In Panel C, our observed effect size is d = 4
(depicted by the red dashed line). Any possible observed value is to
some extent likely both under the null and under the alternative
model, as the probability at this point is not zero under either model.
However, if we follow the intersection of the red line and the two
hypotheses (marked by black dots) and look at the corresponding
density values on the y axis, we get the following: The intersection
of the red line with the null hypothesis (blue line) gives us a predictive
density of approximately .04. The intersection with the alternative hy-
pothesis (green line), gives us a predictive density of approximately
21. The Bayes factor is the ratio between these two densities’. In this
case, .21/.04 gives us a Bayes factor of 5.25. Thus, the Bayes factor is
5.25 in favor of the alternative hypothesis: The data are approximately
five times more likely under the alternative than the null.

Panel D shows what happens when our observed effect size is
—.1. Again, due to sampling error, we might observe a negative
effect size even under the alternative hypothesis of a positive effect.
However, the density under the null happens to be .34, and under
the alternative it is .03, which gives us a Bayes factor of 11.3 in
favor of the null hypothesis.

3 Density is not the same as probability. However, here, it is proportional
to probability: Hence, if we divide the two density values we get a value
which is equal to the ratio of the two probabilities.
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What we have shown so far is the formulation of the Bayes fac-
tor, in terms of the described models (M; and M,) and the observed
data (D) as:

P(DM,)

BF =
P(D|M,)

The attentive reader will have noticed that we are comparing the
conditional probability of the data under the model. Getting from the
conditional probabilities of the data to the conditional probabilities
of the model can be achieved by applying Bayes’ theorem. Using
Bayes’ theorem, we can express the posterior odds of the two mod-
els. This requires some algebraic manipulations, which a reader may
skip for a first-pass reading. First, we express the Bayes factor with
the P(D|M) term replaced by Bayes’ formula, which gives us:

g RO POALID) - P(M)
-r

DIM,) - P(D) — .
PO PO P(My|D) - P(M))

Instead of expressing the Bayes factor as the product of the pos-
terior probability (P(M|D)) and a prior (P(M)), we can rearrange
the information above to derive the posterior odds of the two mod-
els, or the ratio of the conditional probabilities of the models given
the data. This can be obtained by multiplying the Bayes factor by
the models’ prior probabilities:

P(M,|D)
P(M;|D)

_ P(D|M,) - P(M)
" P(D|M>) - P(M>)

In words, we can paraphrase this as:

Posterior Odds = Bayes Factor X Prior Odds

Thus, to derive the posterior odds, we need to multiply the
Bayes factor with our prior belief about how plausible each model
is: For example, we might weigh the alternative hypothesis as
more probable if we are conducting an experiment on the Stroop
task than on precognition. The Bayes factor does not take into
account this prior probability of each model, and is therefore dis-
tinct from the posterior odds (though the posterior odds are equiv-
alent to the Bayes factor in the special case that the two models
are equally likely). Instead, to calculate the Bayes factor, the prior
knowledge or beliefs are instead incorporated in the way in which
the alternative hypothesis is constructed.

Getting from data to posterior odds requires two stages where a
researcher needs to make a decision: First, they need to decide on
the models that specify the two hypotheses, which is required for the
calculation of a Bayes factor. Second, the Bayes factor can be multi-
plied by the researcher by the strength of the prior belief in a model,
which gives the relative posterior probability of the models given
the data. Unless a researcher depends on default priors (objective
Bayesian analysis; Consonni et al., 2018), both stages require
informed and occasionally subjective decisions from the part of the
user, and are here collectively referred to as “priors.” The first step,
a consideration of the plausibility of the model specification, is of
vital importance to the interpretation of a Bayes factor. To date, psy-
chological researchers seem to rely solely on the Bayes factor for in-
ference, without taking the second step of calculating the posterior
odds. This second step provides a more direct answer to the ques-
tion: How much more likely is Model 1 compared with Model 2?

These posterior odds are not generally reported in articles; for any
reader, it is simple to calculate their own posterior odds by multiply-
ing the Bayes factor by their own prior beliefs (Tendeiro & Kiers,
2019). For formal inference, posterior odds should be reported with
caution, and preferably only if the a priori probability of each model
has been prespecified before the Bayes factor has been calculated;
otherwise, finding a value for the strength of a priori belief that
would allow the researcher to “provide support” for a favorite hy-
pothesis becomes a trivial algebraic exercise.

To calculate the Bayes factor, we first need to construct two
hypotheses: commonly, a null model and an alternative model. The-
oretically, we could compare any two hypotheses against each other
(Etz, Haaf, et al., 2018), such as the hypothesis that an effect is nega-
tive versus the hypothesis that an effect is positive (if this makes
sense in light of a research question). The models can often be
derived directly from a verbal theory, though mathematical transfor-
mations are required for which psychologists may want to rely on
statistical software packages.

Once we construct the models, we assess whether the data are
more likely under one model than the other, by calculating the ratio
between the two probabilities. The Bayes factor can be interpreted
as the degree of evidence for one model over another. The degree of
evidence is always for the model in the numerator: If the probability
relating to the alternative hypothesis is in the numerator and the
Bayes factor is large, it provides evidence in favor of the alternative
hypothesis. Which of the models should be put in the numerator is a
matter of convention. Some researchers prefer to always have the
more complex model in the numerator, such that a large Bayes fac-
tor corresponds to evidence for an alternative, and a small Bayes fac-
tor to evidence for the null model. Other researchers prefer to report
the larger value (i.e., the value that is greater than 1), which trans-
lates more straightforwardly to a statement about how much more
likely the data is under one model than the other (e.g., “the data is
3 times more likely under Model 1 than Model 2” as opposed to
“the data is .33 times as likely under Model 2 than Model 1”). The
Bayes factor in favor of the alternative hypothesis is conventionally
denoted B, and the Bayes factor in favor of the null hypothesis is
denoted as By, (Love et al., 2019). Thus, whenever a Bayes factor is
reported, it should always be stated if large numbers provide evi-
dence for the null or the alternative model.

A Bayes factor value of 1 means that the data is equally likely
under either model. Bayes factors are continuous, as they can take
any value between 0 and infinity; the interpretation of different mag-
nitudes is a matter of convention. Bayes factors larger than 3 are
generally taken as some evidence for the model in the numerator,
values larger than 10 as strong evidence, and values larger than 30
as very strong evidence (e.g., Jeffreys, 1961; Rouder et al., 2009).
The inverse of these cut-offs (values < !/5, 1/10, and 1/30, respec-
tively) provide evidence for the model in the denominator. The cor-
rect interpretation of the Bayes factor is as a continuous scale, and
the extent to which the data is more likely under one model than the
other (which corresponds to the extent to which one model is more
likely than the other if both models are equally likely a priori). An
intuitive way to interpret a given Bayes factor value is: How much
would I be willing to bet that this result would replicate? Odds of
30:1 (BF = 30, very strong evidence), would elicit different deci-
sions than odds of 3:1 (BF = 3, moderate evidence).
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How Do I Decide on the Priors and Interpret the Bayes
Factor?

When submitting an article with Bayes factors for publication, it
is likely that the reviewers will ask the authors to justify their pri-
ors. The above section provides the reader with the tools to create
their own priors for a simple design, especially in conjunction
with the R script provided by Rouder (2016). However, most
researchers calculate Bayes factors using software, such as JASP
(Love et al., 2019). This calls for a need to understand default pri-
ors, and what it means to change them. Here, we focus on r-tests,
as the aim is to provide an understanding about how the priors
work, rather than a manual for using JASP. For more complex
designs, choosing a well-informed prior becomes increasingly
more difficult, which is a reason for repeating the recommendation
that an experimental design should be kept as simple as possible
(Cohen, 1990). What follows is a technical explanation: a reader
aiming to get a first-pass conceptual understanding may skip to the
“Interim summary and discussion” section.

Software such as JASP and the R package BayesFactor (Morey
et al., 2018) rely on the Cauchy distribution as a prior for many of
the analyses. A Cauchy distribution looks similar to the well-
known normal distribution: It is symmetrical and bell-shaped. The
two parameters that define the shape of the Cauchy distribution are
the location parameter and the scale (width) parameter: With
these two values, the exact shape of this prior distribution can be
deduced. The location parameter defines where the center of the
distribution lies. The width parameter (®) defines how thick or
slim this distribution is. If we increase the width parameter, we
consider a wider range of effect sizes to be more highly plausible.
If we decrease the width parameter, we indicate increased confi-
dence that the effect size is close to what we predict. Figure 3
shows the Cauchy distribution, always with the same location pa-
rameter (0), but with varying width parameters: as the width pa-
rameter increases, values close to the center become less likely,
while the tails become thicker.

By default, the Cauchy distribution in JASP and in the Bayes-
Factor package is centered around zero. At first, this may seem
counterintuitive, because this is the prior parameter for the

Figure 3
The Cauchy Distribution, Centred Around Zero, With Different
Width Parameters

Different Cauchy width parameters
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Note. See the online article for the color version of this figure.

alternative hypothesis. The reason for the centering is that it allows
us to test a nondirectional hypothesis. Given that the prior distri-
bution is symmetrical and centered around zero, effect sizes of,
say, greater than .5 or smaller than —.5 are equally likely. The
bell-shape of the Cauchy distribution further indicates a belief that
smaller effect sizes are more likely than larger effect sizes. When
we increase the width parameter (o), we increase the a priori prob-
ability of large effect sizes (though small effect sizes will continue
to be more likely).

Software programs such as JASP have a default prior. The
default prior for the alternative hypothesis of a ¢ test is a Cauchy
distribution (see Figure 3), which is centered around zero and has
a width parameter of ® = .707. It is a common misconception that
the width parameter is the expected effect size. Changing the
width parameter does not shift the mode toward the most likely
effect size values. Instead, it changes the relative probability with
which larger effect sizes are proposed to occur: A wide distribu-
tion corresponds to a relatively higher probability of larger effect
sizes (see Figure 3). Thus, while a large width parameter does cor-
respond to the expectation of larger effect sizes, interpreting a
width parameter as the expected effect size is incorrect.

The question is then how to translate the width parameter to the
expected range of effect sizes. Here, it is important to bear in mind
that the point of the Cauchy prior is not to predict a single effect
size, but instead to specify a range of plausible effects. The width
parameter of the Cauchy distribution (®) corresponds to the
bounds of the range of effect sizes which are proposed (by the
researcher) to occur with a 50% probability. Thus, when we spec-
ify the width parameter as ® = 1, we do not put the heaviest weight
on the effect size d = 1, but rather we make the statement: “We are
50% confident that the effect size lies somewhere between d = —1
and d = 1.” The default prior, with the width parameter ® = .707,
therefore, makes the claim: “We are 50% confident that the effect
size lies somewhere between d = —.707 and d = .707.” Thus, for
the special case that we are 50% confident about an effect size
range, the width parameter of the Cauchy distribution translates
directly to the upper bound of the expected effect size range (see
Table 2). If the researcher wants to choose a different level of con-
fidence (e.g., we may be only 20% confident, or even 80% confi-
dent), the width parameter no longer corresponds to the bounds. In
this case, some calculation is required. For a researcher who is
80% confident in their range of expected effect sizes, Table 2 pro-
vides a range of width parameters and effect size ranges that corre-
spond to them.

The default width parameter, as explained above, is a nondirec-
tional prior. JASP allows us to test directional hypotheses in two
different ways. The first is by specifying whether we expect Group
1 to have higher values than Group 2 (“Group 1 > Group 2”), or
lower values (“Group 1 < Group 2”). The nondirectional hypothe-
sis is denoted as “Group 1 # Group 2.” For the directional
hypotheses, the Cauchy is simply cut in half. The interpretation of
a truncated prior is quite similar to that for the nondirectional
prior, as the width parameter translates to the upper bound of the
range that we expect with 50% probability. Thus, the default pa-
rameter (o = .707), with a truncated Cauchy, expecting a positive
effect size, should be described as follows: “We are 50% confident
that the effect size lies somewhere between d = 0 and d = .707.”

An objective Bayes approach would require the consistent
application of the default parameters on JASP, though it is still
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Table 2

Required JASP Width (Scale) Parameters for Different Effect Size Ranges, When the Researcher Is Either 50% or 80%

Confident That the Effect Size Lies Within This Given Range

Range of effect sizes Range of effect sizes

JASP scale parameter JASP scale parameter

(nondirectional) (directional, halved Cauchy) for 50% confidence for 80% confidence
—2to02 —2to0or0to2 2 0.65
—1.5t0 1.5 —1.5t000r0to 1.5 1.5 0.49
—13t0 1.3 —1.3to0or0to 1.3 1.3 0.42
—1.1to 1.1 —1.1to0or0to 1.1 1.1 0.36
—091t00.9 —09to0or0to0.9 0.9 0.29
—0.7t0 0.7 —0.7t00or 0 to 0.7 0.7 0.23
—0.5t00.5 —0.5to0or0to 0.5 0.5 0.16
—-0.3t00.3 —03t000r0t00.3 0.3 0.1

essential that the researcher interprets the results in light of the pri-
ors. A subjective approach requires expert judgment about the
direction and magnitude of the effect, as well as the shape of the
distribution that best describes the prior. In addition to changing
the width parameter, newer versions of JASP also allow us to shift
the location parameter. Here, the expected range (with 50% confi-
dence) can be calculated by adding the amount of the shift to the
lower and upper bounds. When we keep the default width parame-
ter (o = .707), but change the location parameter to d = .5, the
interpretation of the prior is: “We are 50% confident that the effect
size lies somewhere between d = —.207 and d = 1.207.” Further-
more, it is also possible to change the distribution from a Cauchy
to a t- or a normal distribution (Gronau et al., 2020).

What Misconceptions Might Affect the Conclusions
Drawn From a Bayes Factor Analysis?

The above sections aim to explain to psychological scientists
(both researchers and students) what Bayesian statistics is, how
Bayes factors are computed, and how to interpret Bayes factors. We
argued that such understanding is necessary to avoid Bayesian
statistics inheriting the pitfalls of the p-value: usage without a thor-
ough understanding of what these statistics mean. The next question
is what kind of misunderstandings may occur among researchers,
and what negative consequences might be expected when research-
ers use Bayes factors without a thorough understanding (see also
Tendeiro & Kiers, 2019).

Misconception 1: When Reporting the Results, Writing
“Bayes Factor 3” Is Convincing

Figure 4 shows two plots which demonstrate how neither p-val-
ues nor Bayes factors should be reported. While both plots present
valuable information about the observed mean, they lack informa-
tion which is required for the reader to determine whether they
should trust the conclusion that there is probably a group difference.
Both for the p-value and for the Bayes factor, a relevant point for
interpreting the reported results is whether p- or B-hacking may
have taken place. In addition, for the Bayes factor, more informa-
tion about the priors would be needed. As we have seen, the Bayes
factor requires us to specify a prior distribution. Even if we use the
default prior in JASP, there are some underlying assumptions which
may or may not be reasonable for our particular research question,
and using different priors may change the conclusions we will

draw. Therefore, it is important that a Bayes factor is always inter-
preted in light of the prior distributions that have been used.

Both graphs force the viewer to rely on dichotomous decisions.
For the Bayes factor, a range of values greater than 3 encompasses
a lot of possible values. The evidence for the hypothesis could
range from barely above “anecdotal” (B = 3.00001) to “overwhelm-
ing” (B = 3,000,000). A second reason why presenting the results
of a Bayes factor as in Figure 4 is not recommended is that it loses

Figure 4
An Example of How Neither p-Values Nor Bayes Factors Should
Be Presented
A plot with incomplete information
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Another plot with incomplete information

96
B>3
94
9,2 %
9
88
86
84

Group 1 Group 2

Note. An example of how neither p-values nor Bayes factors should be
presented. The asterisk is often used to denote a difference between two
conditions. See the online article for the color version of this figure.
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this information. Treating the Bayes factor as a dichotomy or even
trichotomy (H, supported, H; supported, inconclusive) would mean
that it may inherit problems which are associated with the current
use of p-values. Note that this information is also lost in the graph
with the p-value: a viewer would be likely to interpret p = .047 dif-
ferently than p < .0001. Critically, the use of a single threshold (be
it B> 3 or p < .05) may encourage researchers to try out different
analysis strategies to get above this threshold (p- or B-hacking). If
used as a continuous variable, this does not pose a substantial prob-
lem in terms of interpreting the degree of evidence, because
B-hacking from, say, 2.7 to 3.2 by removing some inconvenient
“outliers” would still provide a Bayes factor in the correct order of
magnitude (though such practices would lead to systematic overes-
timations of the effect sizes). Values which are substantially higher
are more difficult to produce by such questionable posthoc proce-
dures, and also for this reason (in addition to the natural interpreta-
tion of the Bayes factor) should be taken to suggest stronger
evidence. As Figure 4 would report a B-hacked value of 3.2 in an
identical manner to a Bayes factor of 3,000, it loses information
that is crucial to a correct interpretation. This, in turn, increases the
overall impact of B-hacking on the conclusions that are drawn about
the presence or absence of an effect.

In sum, recommendations about reporting Bayes factors are as
follows: First, if accompanied by a figure, the figure should strive
to show the distribution of the values (e.g., a violin plot) or an in-
dication of the variability (e.g., labeled error bars), rather than
only the central tendency. Note that this is true for any analysis
method. Second, whenever a Bayes factor is presented, it should
be clear which priors were used. The distribution (e.g., Cauchy or
normal) should be stated, as well as its parameters (for a Cauchy,
its location and width parameter; for a normal distribution, its
mean and SD). At the very least, a statement that the default priors
in JASP were used is essential. A justification for a prior would
strongly increase the transparency. Third, rather than reporting the
threshold which was exceeded by the Bayes factor (B > 3), report-
ing the actual obtained Bayes factor (e.g., 3.24) will encourage a
continuous interpretation from the side of the reader. A more
detailed set of recommendations for all stages of Bayesian data
analysis in JASP can be found in van Doorn et al. (2021).

Misconception 2: Any Bayes Factor Should Be Taken at
Face Value, Regardless of How It Was Calculated, or:
B-Hacking Is Not a Problem

Adjusting priors opens the possibility of changing the priors in
the hopes that, eventually, the Bayes factor will provide evidence
for the hypothesis that one really wants to be true. If done trans-
parently, performing Bayes factor analyses on the same data but
with different priors does not constitute misconduct. In frequentist
analysis, such researcher degrees of freedom change the long-run
probabilities of false and true positives and negatives, and thus
render any results close to meaningless. As Bayesian inference is
not based on these long-run probabilities, it is sometimes argued
that a Bayes factor value can be interpreted without a considera-
tion of how many analyses were tried before the final model was
decided on (Dienes, 2016). In practice, this argument should be
treated with caution and if multiple models were tried, both this
fact and the reasoning for deciding on the final model should be
transparently reported.

Changing the parameters and assessing how this affects the
results is a form of sensitivity analysis (or robustness check),
where the robustness of results can be verified. For example, when
we expect a large effect size, but find evidence for the null hypoth-
esis, it could be that there is an effect, but it is smaller than
expected and therefore more in line with the null model than with
a large-effect-size prior. In a set of simulations, Schonbrodt et al.
(2017) showed that, when the effect is small (& = .2), and using
the default Cauchy prior (w = .707) and the conventional threshold
of BF < /5 to draw conclusions about the absence of an effect, the
false negative rate approaches 80% (using an optional stopping
approach, where participants are recruited until the threshold is
met): therefore, with a high probability, the researcher will errone-
ously conclude that the effect is not there when, in reality, there is
a true but small effect. Verifying that the evidence for the absence
of an effect persists when the prior is lowered would provide a
stronger case. A sensitivity analysis can be conducted for a range
of H; priors that reflect effect sizes that the researcher judges to be
practically or theoretically meaningful.

Researchers are likely to overestimate the size of an effect when
basing the effect size expectation on previous studies. This is
because p-hacking and publication bias lead to overestimated
effect sizes in the published literature (Gelman & Carlin, 2014).
Thus, especially when we observe evidence for the null hypothesis
with a relatively lax decision threshold, we might want to conduct
a series of additional analyses, where we calculate the Bayes factor
for smaller width parameter values. JASP has an inbuilt robustness
check, which provides a plot of the evidence for H; or Hy for
width parameters ranging from ® = 0 to ® = 1.5. In addition to the
plot, it also provides a value denoted “max BF;,”: this gives the
Bayes factor (for the alternative hypothesis) and the width parame-
ter value (o, denoted r in JASP) where the largest Bayes factor is
found. The appropriate way to interpret the results of this analysis
is not to report only this largest Bayes factor, but to provide the
whole plot. In many cases, this might mean that we need to con-
clude that the hypothesis is supported only under a limited range
of scenarios and that the effect may or may not exist.

Thus, conducting numerous analyses and reporting only the
“best” one is a problem both for frequentist and Bayesian infer-
ence. Bayes factors do not provide a solution to this problem.
However, a shift toward reporting robustness analyses might be an
effective step toward reducing the crisis in psychological sciences.
First, it will raise awareness of the fragility of many results. Sec-
ond, it will encourage caution in interpreting results, when appro-
priate. Note that this is not specific to Bayesian statistics: when
using p-values, especially when posthoc decisions (e.g., about out-
lier removal) are involved, it is advisable to report the results from
all analyses, and not only those that give significant results. In
fact, in frequentist statistics, conducting many analyses until one
observes a significant p-value, and then reporting only the signifi-
cant p-value, is the definition of p-hacking. In an ideal case, to
avoid p-hacking, the data processing and analysis steps should be
defined in advance (e.g., via preregistration), and whatever result
is observed using the predefined methods should be the basis of
the conclusions. In reality, however, the data often behaves in
unexpected ways, which may give legitimate reasons for the
researchers to decide, a posteriori, to change the analysis plan. In
this case, transparency is the key, which could be considered as
exploratory analyses appended to the original analysis plan. The
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recommendation of assessing the robustness of analyses and
reporting them in a paper has been made by Steegen et al. (2016),
who refer to this approach as a multiverse analysis.

Reporting robustness or multiverse analyses would require a
shift of mindset among authors, reviewers, and editors. The con-
clusion that the data might be equally likely under either model,
because different analyses show different results, is often deemed
unpublishable. However, making such data available is vitally im-
portant. First, even when individual studies yield inconclusive
results, combining them in a meta-analysis should provide a more
definite answer, in the long run. Second, selective reporting of
studies with conclusive results—or, even worse, of analyses which
yielded conclusive results even when other analyses of the same
data did not show an effect—will distort the evidence for a given
effect, by making it appear more robust than it actually is. Whether
one is using a Bayesian or a frequentist framework, the observed
data is subject to the same error term: by publishing papers and
analyses which give the best results, we change the random error
term to a systematic one, where studies are more likely to be pub-
lished when the error term increases the observed effect size com-
pared to the population (i.e., where d > §).

Misconception 3: The Bayes Factor Is Never Wrong

With the p-value, if the null hypothesis is true and we perform
10,000 experiments, we expect to get 500 significant results (5%
of all experiments if our threshold is p < .05). This is a feature,
not a bug: The side of significance on which the p-value falls is
sometimes incongruent with whether an effect is actually present
in the population, but the p-value is designed in such a way that it
is wrong in a fixed percentage of experiments, under the assump-
tion of the null hypothesis.* The Bayes factor follows a different
logic, and as such, concepts such as the false positive rate are not
central to its interpretation. However, same as the p-value, it can
sometimes provide evidence for a model which is different from
the population parameters. It is important that researchers are
aware of this: A cause for the replication crisis is likely to be an
overreliance on significant p-values as an indicator for the pres-
ence of the effect, while forgetting that they can sometimes occur
under the null hypothesis (especially if the null hypothesis is
highly likely a priori; see Figure 1).

The proportion of times a Bayes factor gives the wrong conclu-
sion depends on (a) the effect size, (b) the sample size, (c) the prior
parameters, and (d) the threshold at which one draws a conclusion
(e.g., BF >3 or BF > 10). Schonbrodt et al. (2017; see their Table
1) conducted a series of simulations to estimate the percentage of
erroneous conclusions for a wide range of these three parameters,
assuming an approach where sample size is determined by testing
participants until a BF threshold is hit. For an effect size of 6 = 0,
the default prior width parameter of ® = .707, and the standard
threshold of BF > 3, the false positive rate is 7.5%. Per se, this is
not a fatal blow for the use of Bayes factor: As any statistic, it is
susceptible to noise, and there will always be occasional data sets
which seem to provide evidence for a wrong conclusion. However,
it has implications for interpreting Bayes factors.

In particular, it is important to bear in mind that, if we conduct
10,000 studies where the null hypothesis is true and analyze them
with the default Bayes factor in JASP, we will have some Bayes
factors which are greater than 3. Note that, as sample size increases,

such false positives will become rarer: This is an important differ-
ence compared with p-values, where the false positive rate is, by
definition, fixed by the alpha-level and is independent of sample
size. If we determine the sample size by sequential testing until we
reach the desired threshold, we will obtain, on average, 750 false
positives. In practice, false positives will become problematic when
researchers conduct multiple comparisons. If the variables are not
correlated (Bishop & Thompson, 2016), a researcher who has given
seven different tests to the participants and continues testing until at
least one of them provides evidence for a group difference (BF > 3)
already has a > 50% chance, in the long run, to find support for at
least one alternative hypothesis, even if the null hypothesis is true
in all cases (7 X .075 =.525). Same as with p-values, this becomes
a problem with selective reporting of variables or HARKing
(hypothesizing after results are known; Kerr, 1998).

Misconception 4: “Power” for Bayes Factor Analyses

When using frequentist statistics, a power analysis is mostly
required by editors of Registered Reports, by ethics committees,
or for grant proposals. The rationale is that we want to maximize
the chance of being able to draw meaningful conclusions after the
completion of a study: Finding a nonsignificant p-value with a sta-
tistical power of 10% leaves us in the position where we learned
very little about the posterior probability of the null hypothesis
being true (the reader is encouraged to substitute a power of .1 to
calculate a posterior probability of H;, using Bayes’ theorem intro-
duced in section What Does Bayesian Statistics Mean?). Thus,
considering power is important, from a frequentist perspective, to
ensure an effective use of resources.

When we conduct a Bayes factor analysis, it is equally important
that we maximize the chance to draw meaningful conclusions.
However, the terminology “power” is defined from a frequentist
perspective, and as such does not directly apply to the Bayesian
framework. This is because the power is a long-run probability, and
therefore an inherently frequentist concept. It is, however, possible
to compute the long-run probabilities of false positives and false
negatives. For Bayes factor analyses, these depend, as in the fre-
quentist framework, on the population effect size & (in the case of a
false negative - for a false positive, by definition, & = 0), but also on
the prior parameters and the BF threshold which one takes as con-
clusive evidence. A table with false positive and false negative
probabilities, for a wide range of scenarios, is presented by Schon-
brodt et al. (2017).

One can also ask the question: How many participants do I need
to test if I want to have a high long-run probability that I will obtain
a Bayes factor exceeding a certain threshold? Again, this depends
on the population effect size d, on the prior parameters, and on the
decision threshold. Schonbrodt et al. (2017) provide the “average
sample number”: The average number of simulated participants that
were required before the Bayes factor exceeded the threshold for a
variety of effect sizes and prior parameters. These numbers are a
very useful guideline to a researcher justifying their sample size
and priors to an editor, funder, or ethics committee, and should be
consulted while planning an experiment to maximize the probabil-
ity of getting a meaningful result. However, given the continuous

4 p-hacking, by definition, invalidates this feature, and may increase the
false positive rate to up to 60% (Simmons et al., 2011).
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interpretation of a Bayes factor, even inconclusive data might be
useful in the long term. When the Bayes factor provides only weak
or anecdotal evidence, authors should refrain from drawing strong
conclusions. However, researchers who have limited resources and
cannot maximize their chance to draw strong conclusions can inter-
pret a weak or anecdotal Bayes factor and contribute to the litera-
ture by providing a data set which can be included in meta-
analyses.

Should We Switch From p-Values to Bayes Factors?

An increasing number of publications recommend the use of
Bayesian statistics instead of or in addition to frequentist inference
(e.g., Dienes, 2011, 2014, 2016; Rouder et al., 2009; Wagen-
makers, 2007). The desire for alternatives to the p-value is exacer-
bated by the crisis in psychological science, which resulted from a
realization that many results may not be true, even those that made
it into undergraduate psychology textbooks (Open Science Collab-
oration, 2015). At the same time, the availability of easy-to-use
software allows even researchers with little knowledge of Bayes-
ian statistics to calculate Bayes factors. While learning about novel
analysis methods is always advantageous, it is important to ensure
that the psychological science community is aware of the problems
that can and cannot be addressed by Bayesian statistics.

The premise of the current article is that the researcher needs to
understand the logic behind the test beyond knowing how to calcu-
late it, no matter which statistical tool is used for inference (Giger-
enzer, 2004). The current article aims to provide an introduction to
the logic and pitfalls behind Bayes factor to a psychology
researcher or student with limited knowledge of probability and
statistics. For practical reasons, the current introduction is limited
in terms of its comprehensiveness. The interested reader is encour-
aged to read further articles on Bayesian statistics to get a fuller
understanding: an annotated reading list is provided by Etz, Gro-
nau, et al. (2018).

What Can Bayes Factors Do That the p-Value Cannot?

Both p-values and Bayes factors can be used correctly or incor-
rectly: an incorrect use of either statistic is problematic, but not in
itself a valid argument to use one over the other. However, com-
pared with p-values, the Bayes factor has several features that
might allow for more appropriate inferences. First, the p-value is
defined as a conditional probability for the case that the null hy-
pothesis is true: It does not take the probability of the data under
the alternative hypothesis into account. To calculate a Bayes fac-
tor, the researcher needs to take into account an alternative hypoth-
esis: As most psychological researchers are technically interested
in an alternative hypothesis (e.g., the presence of a treatment
effect), this arguably allows for a closer mapping between the
researcher’s question and the statistical method. In fact, the poste-
rior probability of H1 derived from the Bayes factor reflects the
probability of HI being true given the observed data (see section
converting the Bayes factor to posterior odds).

Second, the Bayes factor encourages a continuous interpretation
of the results. In the context of frequentist statistics, the p-value is
often treated as a tool to make a binary decision: If we want to fix
the long-term false-positive rate at 5%, p < .05 means that we can
reject the null hypothesis, while p = .05 means that we cannot.’
The interpretation of the p-value as the long-term error rate

requires a dichotomous interpretation. In contrast, the Bayes factor
allows for a continuous interpretation: values above 1 provide “an-
ecdotal evidence”; values about 3 “some evidence”; and values
above 10 “strong evidence.” These labels might encourage
researchers to interpret the strength of evidence, and to be more
tentative about their conclusions with a BF > 3 than when they
observe a BF > 3,000. This also applies to interpreting the evi-
dence for effects in the published literature: when building on
effects which are supported with relatively small Bayes factor val-
ues the researcher may want to replicate the effect before building
on it.

Third, the Bayes factor allows for inferences in favor of a null
hypothesis, while a frequentist approach can only be used to reject
a null hypothesis. By taking into account both an H, and H,
model, the Bayes factor allows us to quantify the degree of evi-
dence for the Hy model, relative to the specified H;. Psychology
suffers from the selective publication of positive (i.e., significant)
results (Rosenthal, 1979): This significance filter leads to the illu-
sion of consistent evidence for an effect, even if the real effect is
zero. One reason for this selective publication may be that a non-
significant p-value cannot be interpreted as evidence of absence,
thus yielding frequentist null-results difficult to interpret and thus
difficult to use in theory building or for decision making (e.g.,
Schmalz & Mulatti, 2017). The ability to draw inferences about a
null hypothesis may alleviate this problem. However, it is impor-
tant to bear in mind that null results may be uninterpretable for
nonstatistical reasons: For example, poor measurement will yield
both frequentist and Bayesian null-results uninterpretable, as it
will be unclear whether a lack of a group difference or correlation
reflects the absence of the effect or the poor measurement (Spear-
man, 1904). The ability of the Bayes factor to support the null hy-
pothesis also comes with the caveat that the conclusions might not
prove robust under different H; models, and thus, a sensitivity
analysis with different priors is recommended to provide evidence
for H.

What Can Bayes Factors Not Do?

P-values and Bayes factors share some of their pitfalls. Neither
should be applied without some understanding of the underlying
principles. In the case of p-values, research has shown that a ma-
jority of researchers have misconceptions about p-values which
lead to inappropriate data analysis and inferences (John et al.,
2012; Simmons et al., 2011). This continuing misuse of p-values
has contributed to a crisis of confidence in psychological science
(Pashler & Wagenmakers, 2012). Bayes factors may prove more
robust than p-values in the long term. However, this should not
be taken for granted: Simply switching from calculating p-values
to calculating Bayes factors without understanding how true or ro-
bust these results are may result in misunderstandings that poten-
tially have systematic detrimental effects on the research
literature. For example, as explained above, trying out different
priors and reporting the analysis that gives the biggest Bayes

5 A continuous interpretation of the p-value as strength of evidence has
been proposed by Fisher. This interpretation is contentious, and
incompatible with a frequentist interpretation. Some researchers will,
however, rely on the intuitive notion that p = .00001 should be treated
differently from p = .048, while simultaneously relying on the frequentist
framework (Gigerenzer, 2004).
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factor, in conjunction with publication bias, where inconclusive
results are not published, will yield a literature with overestimated
effect sizes for true effects, and an erroneous idea that there is con-
vincing evidence for or against a given effect.

It has been argued that Bayes factors are immune to some of the
questionable research practices that, in many cases, make the p-
value uninterpretable. Examples of such p-hacking practices are
selective reporting of variables, optional stopping (testing a num-
ber of participants, calculating a p-value, and continuing to collect
data if p > .05), or removing outliers conditional on p > .05. If
Bayes factors are interpreted as continuous degrees of evidence,
such practices are not problematic (Dienes, 2016; Rouder, 2014).
This interpretation, however, might be counterintuitive to a
researcher who is used to thinking of statistical test results in terms
of making a binary decision. The bigger the Bayes factor, the
smaller the probability of a false positive or false negative (Schon-
brodt et al., 2017). However, if researchers treat both BF,o = 3.1
and BF;y = 31 as evidence for the alternative hypothesis, they
might miss the point that a false positive is more likely when the
former is observed. This is problematic when researchers analyze
many variables and report only those that exceed a threshold. In an
exploratory setting, a BF > 30 might be very rare unless there
really is a true effect in the population, but one is likely to come
across a BF > 3 even if the data consists of noise. Thus, selective
reporting and multiple comparisons are likely to become problem-
atic in cases when the Bayes factors are relatively small.

Both p-values and Bayes factors are tools for hypothesis testing:
they provide a means for selecting between two models. This is or-
thogonal to effect size estimation (Kruschke & Liddell, 2018; but
see also Kiers & Tendeiro, 2019; Rouder et al., 2018). Effect size
estimation can occur either via a frequentist or Bayesian frame-
work: in the former case, this involves calculating the maximum
likelihood estimator or best linear unbiased estimator and plotting
95% confidence intervals around it (Cumming, 2014). In the latter
case, a posterior distribution is calculated by combining the prior
distribution with incoming data (Kruschke & Liddell, 2018). The
peak of this distribution is the estimate of the effect size, and the
bounds encompassing 95% of the area constitute the 95% credibil-
ity interval.

Hypothesis testing is likely to be more popular in psychological
science than effect size estimation, because most hypotheses in
psychology are only directional (Meehl, 1990): We predict that
H1 < My, but not by how much. Therefore, finding an effect size of
d = .7 would not corroborate a theory any more or less than finding
an effect size of d = .2. Note, however, that even if there is no
theoretical prediction about the magnitude of an effect size, con-
sideration of effect sizes is still required in practice for power
calculations and required sample size estimations. Directional
hypotheses make theories in psychological sciences difficult or
even impossible to falsify (Meehl, 1990). Point hypotheses, in
contrast, constrain the range of plausible values, such that showing
that experimental results are inconsistent with the plausible range
provides evidence against the theory. With an accumulating
amount of data and use of computational models, point hypotheses
should be possible for some research questions. For example, one
might have a theory that predicts that an effect X should be smaller
than a well-established effect Y but greater than zero. When the
mechanisms are well-understood and the measurement error is

relatively small, computational models of these mechanisms might
be able to provide such estimation.

Despite being suitable for testing directional hypotheses, both
the p-value and the Bayes factor require the researcher to think
about the effect size: in the case of frequentist statistics, for a
power calculation, and in the case of the Bayes factor, for the spec-
ification of the prior (Rouder et al., 2016). The need to specify the
prior might further push researchers to think about effect sizes,
which would be a step toward thinking about point or range pre-
dictions rather than only testing the direction of an effect.

If effect size estimation (e.g., in a meta-analysis) is the ultimate
goal (Schmidt, 1996), questionable research practices might
be problematic both for p-values and for Bayes factors. With the
example of optional stopping, we might test 20 participants; we
observe a p-value of .07 or a Bayes factor of 2.6. We continue test-
ing five participants at a time, after each batch of five participants
we rerun the analyses and stop if the p-value or Bayes factor
exceed the threshold. In both cases, the decision to terminate data
collection is conditional on exceeding this threshold. This can hap-
pen for one of two reasons: It is possible that the observed effect
size approaches the nonzero population effect size, in which case
having collected more data would have helped to converge to the
correct answer. The other possibility is that we happened to have
tested a batch of participants with particularly high observed
effects due to the error term. If the error term had resulted in a
lower effect size, or cancelled out across the five participants, the
test statistic would be less likely to reach the threshold. Thus,
while the error term is generally considered to be random, condi-
tioning on exceeding a threshold, which corresponds to larger
observed effect sizes, leads to a slight but systematic overestima-
tion of the effect size, in the long run. This may not be problematic
to interpreting the Bayes factor; however, if there is a publication
filter such that studies or analyses with Bayes factor values below
3 are not published, this will lead to a systematic inflation of effect
sizes in the published literature.

Conclusion and Final Recommendations

Bayes factors, like p-values, come with a set of nuances and
caveats. Using them effectively and convincingly requires an
understanding of the basic concepts behind the Bayes factor, the
way in which the prior is calculated, as well as a series of basic
probability concepts that affect both the interpretation of p-values
and of Bayes factors. The current article aimed to provide an over-
view of such concepts to researchers or students with basic statis-
tics knowledge.

A shift from frequentist to Bayesian statistics is unlikely to be
sufficient to alleviate the symptoms of the replication crisis in psy-
chology. The current article discusses the consideration of the a
priori probability of a hypothesis, consideration of the expected
effect sizes, and transparency. These are likely to be effective
methods to increase the credibility of the literature in psychologi-
cal sciences. Considering the a priori probability of a hypothesis
involves building closely on theories and previous, credible work.
This will reduce the a posteriori probability that a dataset, showing
evidence for an effect, is not a false positive. The consideration of
expected effect sizes will help researchers in planning an experi-
ment, but it will also allow researchers to be skeptical about unre-
alistically big effect sizes reported in the literature (Gelman &
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Weakliem, 2009). One efficient way to encourage researchers to
think about expected effect sizes is through the use of Registered
Reports (Chambers et al., 2015). A Registered Report is an article,
consisting of an introduction, methods, and planned analysis sec-
tion, that is submitted to a journal before data collection. As a Reg-
istered Reports requires the authors to outline the data processing
and analysis plan, it will also increase transparency about the anal-
yses that have been conducted. Changes to this plan may be
required if the data behaves in unexpected ways, but these can be
reported as exploratory analyses. To maximize the robustness of
an article, a sensitivity analysis is recommended.

We do not conclude that one way of analyzing the data is inher-
ently better than the other, but that both approaches can lead to ei-
ther appropriate or inappropriate conclusions, depending on the
way which they are used. At the same time, we encourage any
researcher or student who is curious about Bayesian statistics to
learn more about them. Three books which provide an introduction
to Bayesian thinking, though not necessarily with a focus on Bayes
factors, are Kurt (2019); Lambert (2018); McElreath, (2020); and
van de Schoot et al. (2021). Etz, Gronau, et al. (2018) also provide
a list of articles varying in prerequisite knowledge. There are sev-
eral reasons for learning more about Bayesian statistics in general,
and Bayes factors specifically: First, their use in psychological sci-
ence is likely to increase due to the publicity and development of
easy-to-use software, meaning that a researcher is likely to come
across an article which used Bayes factors for inference. An under-
standing of the pitfalls will provide the researcher with the means
to evaluate whether the conclusions are justified. Second, learning
about Bayesian statistics is bound to also improve their under-
standing of frequentist statistics and their pitfalls. Third, with this
additional statistical tool, the researcher will increase the flexibility
in addressing research questions: One clear advantage of the Bayes
factor is that it can be also used to provide evidence for the ab-
sence of an effect.
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